
© 2017 Page i

Provided by:

ECDL Malta

ECDL COMPUTING

Syllabus 1.0
Learning Material

Page ii ECDL Computing S1.0 V1 060217 © 2017

Copyright ECDL Foundation 2015 - 2019. All rights reserved. Reproducing, repurposing, or distributing this courseware without the
permission of ECDL Foundation is prohibited.

ECDL Foundation, ECDL Europe, ECDL and related logos are registered business names and/or trademarks of ECDL Foundation.

This courseware may be used to assist candidates to prepare for the ECDL Foundation Certification Programme as titled on the
courseware. ECDL Foundation does not warrant that the use of this courseware publication will ensure passing of the tests for that ECDL
Foundation Certification Programme.

The material contained in this courseware does not guarantee that candidates will pass the test for the ECDL Foundation Certification
Programme. Any and all assessment items and / or performance-based exercises contained in this courseware relate solely to this
publication and do not constitute or imply certification by ECDL Foundation in respect of the ECDL Foundation Certification Programme or
any other ECDL Foundation test. This material does not constitute certification and does not lead to certification through any other
process than official ECDL Foundation certification testing.

Candidates using this courseware must be registered with the National Operator before undertaking a test for an ECDL Foundation
Certification Programme. Without a valid registration, the test(s) cannot be undertaken and no certificate, nor any other form of
recognition, can be given to a candidate. Registration should be undertaken at an Approved Test Centre.

Python is a registered trademark of the Python Software Foundation. Python and it standard libraries are distributed under the Python
License. Details are correct as of December 2016. Online tools and resources are subject to frequent update and change.

© 2017 Page iii

ECDL Computing

With the increased use of computers in all areas of life, there is a growing interest in
learning about the fundamentals of computing, including the ability to use computational
thinking and coding to create computer programs.

The ECDL Computing module sets out the skills and competences relating to computational
thinking and coding and will guide you through the process of problem solving and creating
simple computer programs. Based on the ECDL Computing syllabus, this module will help
you understand how to use computational thinking techniques to identify, analyse and solve
problems, as well as how to design, write and test simple computer programs using well
structured, efficient and accurate code.

On completion of this module you will be able to:

• Understand key concepts relating to computing and the typical activities involved in
creating a program.

• Understand and use computational thinking techniques like problem decomposition,
pattern recognition, abstraction and algorithms to analyse a problem and develop
solutions.

• Write, test and modify algorithms for a program using flowcharts and pseudocode.
• Understand key principles and terms associated with coding and the importance of

well-structured and documented code.
• Understand and use programming constructs like variables, data types, and logic in

a program.
• Improve efficiency and functionality by using iteration, conditional statements,

procedures and functions, as well as events and commands in a program.
• Test and debug a program and ensure it meets requirements before release.

What are the benefits of this module?

ECDL Computing has been developed with input from computer users, subject matter
experts, and practising computing professionals from all over the world to ensure the
relevance and range of module content. It is useful for anyone interested in developing
generic problem solving skills and it is also provides fundamental concepts and skills
needed by anyone interested in developing specialised IT skills.

Once you have developed the skills and knowledge set out in this book, you will be in a
position to become certified in an international standard in this area – ECDL Computing.

For details of the specific areas of the ECDL Computing syllabus covered in each section of
this book, refer to the ECDL Computing syllabus map at the end of the learning materials
book.

Page iv © 2017

© 2017 Page v

ECDL COMPUTING

LESSON 1 – THINKING LIKE A PROGRAMMER ... 1

1.1 Computational Thinking .. 2

1.2 Instructing a Computer .. 9

1.3 Review Exercise ... 12

LESSON 2 – SOFTWARE DEVELOPMENT .. 14

2.1 Precision of Language .. 15

2.2 Computer Languages ... 16

2.3 Text About Code ... 18

2.4 Stages in Developing a Program ... 20

2.5 Review Exercise ... 22

LESSON 3 – ALGORITHMS ... 23

3.1 Steps in an Algorithm .. 24

3.2 Methods to Represent a Problem .. 25

3.3 Flowcharts .. 27

3.4 Pseudocode .. 31

3.5 Fixing Algorithms .. 32

3.6 Review Exercise ... 34

LESSON 4 - GETTING STARTED .. 36

4.1 Introducing Python .. 37

4.2 Exploring Python ... 37

4.3 Saving a Program ... 40

4.4 Review Exercise ... 45

LESSON 5 - PERFORMING CALCULATIONS ... 46

5.1 Performing Calculations with Python ... 47

5.2 Precedence of Operators .. 48

5.3 Review Exercise ... 50

LESSON 6 – DATA TYPES AND VARIABLES.. 51

6.1 Data Types ... 52

6.2 Variables ... 53

6.3 Beyond Numbers .. 56

6.4 Review Exercise ... 60

LESSON 7 – TRUE OR FALSE ... 62

Page vi © 2017

7.1 Boolean Expressions .. 63

7.2 Comparison Operators .. 64

7.3 Boolean Operators .. 65

7.4 Booleans and Variables .. 68

7.5 Putting It All Together ... 70

7.6 Review Exercise ... 72

LESSON 8 – AGGREGATE DATA TYPES .. 73

8.1 Aggregate Data Types in Python .. 74

8.2 Lists .. 75

8.3 Tuples ... 76

8.4 Review Exercise ... 78

LESSON 9 – ENHANCE YOUR CODE .. 79

9.1 Readable Code ... 80

9.2 Comments .. 80

9.3 Organisation of Code .. 81

9.4 Descriptive Names .. 81

9.5 Review Exercise ... 84

LESSON 10 – CONDITIONAL STATEMENTS... 85

10.1 Sequence and Statements .. 86

10.2 IF Statement ... 86

10.3 IF…ELSE Statement ... 88

10.4 Review Exercise ... 90

LESSON 11 – PROCEDURES AND FUNCTIONS ... 91

11.1 Subroutines ... 92

11.2 Functions and Procedures .. 92

11.3 Review Exercise ... 96

LESSON 12 – LOOPS .. 97

12.1 Looping ... 98

12.2 Looping with Variables .. 100

12.3 Variations on Loops .. 101

12.4 Putting It All Together.. 103

12.5 Review Exercise ... 107

LESSON 13 – LIBRARIES ... 108

13.1 Using Libraries .. 109

13.2 Standard Libraries ... 110

© 2017 Page vii

13.3 Events ... 115

13.4 Pygame Library ... 117

13.5 Boilerplate Code ... 119

13.6 Drawing Using the Libraries .. 123

13.7 Review Exercise ... 128

LESSON 14 – RECURSION ... 129

14.1 Recursion .. 130

14.2 Recursive Drawing .. 132

14.3 Review Exercise ... 136

LESSON 15 – TESTING AND MODIFICATION .. 137

15.1 Types of Errors ... 138

15.2 Finding Errors ... 139

15.3 Testing and Debugging a Program.. 143

15.4 Improving a Program ... 145

15.5 Review Exercise ... 148

ECDL SYLLABUS .. 150

LESSON 1 –
THINKING LIKE A PROGRAMMER

After completing this lesson, you should be able to:

• Define the term computing

• Define the term computational thinking

• Outline the typical methods used in computational thinking: decomposition,
pattern recognition, abstraction, algorithms

• Use problem decomposition to break down data, processes, or a complex
problem into smaller parts

• Define the term program

• Understand how algorithms are used in computational thinking

• Identify patterns among small, decomposed problems

• Use abstraction to filter out unnecessary details when analysing a problem

Lesson 1 – Thinking Like a Programmer ECDL Computing

Page 2 «PageFooterText» © 2017

1.1 COMPUTATIONAL THINKING

 Concepts

Computing is the performing of calculations or processing of data, especially
using a computer system.

Computational thinking is the process of analysing problems and challenges
and identifying possible solutions to help solve them.

Computational thinking is useful in complex problems or tasks such as designing
products, cooking, planning events, fixing things that are broken, assembling flat
pack furniture, and in many other problem solving situations.

Computational thinking uses four key problem-solving techniques. They can be
used in any order and in any combination.

Pattern Recognition
A pattern is a repeated design or feature, like the chorus of a song or a motif on
fabric or wallpaper. Patterns can also be found in activities, for example, several
different recipes may involve setting the oven to a certain temperature and waiting
for it to heat up. This is known as a shared pattern. Pattern recognition involves
finding patterns or repetition within complex problems or among smaller related
problems.

In the figure above the first set of coloured blocks has been split in two to highlight
the presence of a pattern that is being repeated.

Abstraction
Abstraction is the process of extracting the most important or defining features
from a problem or challenge. The extracted features provide the information to
begin examining the challenge and find potential solutions. It involves filtering out
unnecessary details and only looking at information that is relevant to solving the
problem. In the task of baking biscuits, it is not important whether you are right or
left-handed. The information that is relevant to completing the task includes the

ECDL Computing Lesson 1 – Thinking Like a Programmer

© 2017 «PageFooterText» Page 3

ingredients, the order in which you mix them in, and the duration and temperature
of cooking.

In the following example, any unnecessary details have been removed from the
second image of the dog so only the information relevant to solving the problem
remains – there is a dog and it wants food.

Decomposition
Decomposition involves breaking a complex problem down into smaller, simpler,
easier to understand problems. The smaller problems can be broken down into
smaller and smaller problems until they are easy to understand and manage. In
the task of making biscuits, a smaller problem might be to ensure that the oven is
at the right temperature. The image illustrates how a complex problem can be
decomposed into smaller and smaller parts or problems.

Algorithms
An algorithm is an organised set of instructions which provides steps for solving a
problem or completing a task. For example, an algorithm could be the instructions
in a recipe or the calculations for a computer to follow. Algorithmic design is the
process of creating these well-defined instructions in the form of steps to solve

Problem Smaller

Smaller

Smaller

Lesson 1 – Thinking Like a Programmer ECDL Computing

Page 4 «PageFooterText» © 2017

problems or complete tasks successfully. A possible algorithm for making
pancakes involves the following steps:

Two additional approaches often included as part of computational thinking are
evaluation and generalisation:

Evaluation
Evaluation involves validating the design, of a product or an algorithm, by
checking that it does what it’s meant to, or solves the problem.

Generalisation
Generalisation is taking a solution and finding a way to make it useful in a wider
set of circumstances. For example, you might use symbols instead of words on a
products’ controls so it can be used regardless of the language spoken. In the
following image the basic structure of the flower is always the same and can be
used repeatedly but the characteristics such as the colour and shape can be
varied.

Milk, Eggs, Butter,
Sugar, Salt

Mix together
to form batter

Fry until
golden brown

Serve Warm

ECDL Computing Lesson 1 – Thinking Like a Programmer

© 2017 «PageFooterText» Page 5

These six computational thinking skills work together to solve complex problems
in computing and beyond.

 Steps

Example: Designing a Washing Machine

In this example the techniques of computational thinking are applied to the
complex problem of designing a washing machine.

Abstraction
The first step in designing a washing machine is to determine the goal – for
example it should be able to wash vigorously or gently, at a low or high
temperature and produce clean clothes. The design phase involves listing the
features to achieve this goal. Abstraction can be used to help the designer filter
out what is relevant and what is not when listing the features to include and
exclude. Details that aren’t relevant might include things such as the colour of the
washing machine or whether the load to be washed has six pairs of socks or three
pairs of socks.

Details that are relevant are those that affect the overall functionality and they
might include things such as water temperature and whether a programme is for
delicate or hard-wearing fabrics. These details are relevant to solving the problem
of producing clean clothes without damaging them.

Lesson 1 – Thinking Like a Programmer ECDL Computing

Page 6 «PageFooterText» © 2017

Decomposition
Decomposition can be used to break the problem down into smaller, more
manageable problems, such as:

• How do we get clothes in and out of the washing machine?
• How do we get water in and out of the washing machine?
• How do we make sure the water is at the right temperature?

In turn these small problems may be decomposed into even smaller ones:

• Where is a good place for a door on a washing machine?
• How can we make a door that seals properly, so water does not leak out?

Decomposition of the problem of designing a washing machine

Algorithms
Algorithms can be designed to specify the precise steps that the machine should
follow for different wash cycles. And there are many other algorithms needed. For
example an algorithm can be designed to specify the sequence of precise steps to
be followed to manufacture the washing machine.

Evaluation
Designing a product is a big challenge, so early designs will be continuously
evaluated. Through evaluation, the designers learn where and how the design can

• Where is the door?
• Is the door seal good?
• How does it lock?

• How does water get in?
• How does water get out?

• What temperature to wash at?
• How to ensure correct temperature?

Water

Temperature

Door

ECDL Computing Lesson 1 – Thinking Like a Programmer

© 2017 «PageFooterText» Page 7

be improved. For example, if while testing a machine, water leaks out, the design
can be modified to prevent this happening in future.

Generalisation
The washing machine design may also be improved by making it universal, for
example using symbols instead of words on the controls, so that it can be used by
people regardless of their language, or by designing it to work on 110 volts as well
as 220 volts for use in different countries. If the design is modified in this way,
then it has been generalised.

Pattern Recognition
Pattern recognition has an important role and along with the other five techniques
it can be used multiple times throughout the different stages of the design
process. It can help with abstraction by highlighting the similarities and
differences in aspects of a problem. Pattern recognition can also help with
generalisation; where aspects of one particular problem can be related to more
general problems. Similarly, evaluation of the design helps to generalise it, by
evaluating how the design may be applied in different settings.

The six techniques in computational thinking are not necessarily applied in
sequence or at only one stage of the design process. They are used in many
stages of design and in different sequences.

 Steps

Example: Organising a Music Festival

In this example the techniques of computational thinking are applied to the
complex problem of organising a music festival.

Abstraction
To begin to plan a music festival you must understand what a music festival is, so
the first step could be to list essential things that a music festival should have:

• Musicians
• Venue
• Marketing and publicity
• Tickets
• Staff etc.

There will be other details to consider in organising the festival, which are not
essential such as the colour of the tickets and the exact wording on the tickets.

Lesson 1 – Thinking Like a Programmer ECDL Computing

Page 8 «PageFooterText» © 2017

These can get in the way of the initial planning, and can be worked out later.
Using abstraction, the non-essential details can be removed from the plan for the
moment.

Decomposition and Algorithms
The challenges in organising the musical festival can then be broken down into
smaller challenges. In practice, they could be delegated to individual people to
solve:

• Someone to liaise with the venue where the festival will take place.
• Someone to deal with publicity.
• Someone to work on bookings and tickets.

These smaller challenges can be further broken down into even smaller problems
to solve. This is decomposition of the problem and an example of applying the
methods of computational thinking.

For example the problem of organising the venue could be broken down as
follows:

• Where will it be?
• When is it available?
• What are the car parking arrangements?

And the smaller problem of the car parking arrangements can be broken down
into small processes or decomposed. And simple algorithms can be created,
including some of the following:

• To direct cars to designated spaces.
• To direct cars to the overflow car park when the main one is full.
• To prevent cars blocking important routes.
• To make sure priority parking is kept clear for people who are entitled to it.

The problem of publicity could be broken down as follows:

• How to make the festival interesting so that people will want to go?
• How to advertise to your intended audience event in a cost-effective way?

And the booking and ticketing process can also be decomposed further. For
example the ticketing process can be broken down into a set of steps, and an
algorithm created covering design, printing, purchase, delivery, concessions,
refunds etc.

ECDL Computing Lesson 1 – Thinking Like a Programmer

© 2017 «PageFooterText» Page 9

Decomposition of the problem of organising a music festival

Evaluation
After the event has run, it can be helpful to gather feedback about what worked
well and what did not work so well. This is a way of evaluating the plan. If the
festival runs again, the lessons learned from the evaluation will improve the
following year’s event.

Generalisation
Generalisation is relevant too. A team that has run a music festival might go on to
more ambitious goals, for example a series of festivals in a tour, or increasing the
duration of the festival, adding more acts, or more kinds of music. The existing
solution or formula is reused, but generalised to include new elements.

1.2 INSTRUCTING A COMPUTER

 Concepts

Computational thinking is a general problem solving approach but it can also be
used as the starting point in creating instructions for computers.

• Where?
• When is it available?
• What about parking?

• How to reach right people?
• How to keep costs down?

• How to issue?
• What about concessions?
• How to check tickets?

Publicity

Tickets

Venue

Lesson 1 – Thinking Like a Programmer ECDL Computing

Page 10 «PageFooterText» © 2017

The decomposition of problems into simpler steps leads to development of one or
more algorithms - collections of well defined, simple steps, to be followed in
order to solve a problem. Algorithms can then be presented in ways that
computers can understand.

 Steps

Example: An algorithm for sorting people by height

In this example you want to sort the people in your class by height. To do this, you
could decide on a number of steps to perform:

Step 1: Line everyone up in a single row.
Step 2: Decide which end of the row is to be ‘tall’ and which is to be ‘short’.
Step 3: Repeatedly compare heights and switch students when they are in the

wrong place.

This set of steps is an algorithm. However, it is not very detailed. Step 3, for
example, could be further decomposed into smaller problems:

• Which end of the row to start at
• How to compare student heights
• What to do if the students are taller or shorter

Once designed correctly, this algorithm for sorting people by height could be
modified to solve slightly different problems. A small variation on the algorithm
could instead sort people in the class by order of birthday. And with further
modifications, it could be used to find out if any two people have the same
birthday.

 Concepts

Algorithms for Computers
In the algorithm for sorting people by height the instructions are detailed enough
for a human to follow, but they aren’t detailed enough for a computer to follow. A
computer needs to be instructed using a computer language, which is much more
detailed and precise than human language.

ECDL Computing Lesson 1 – Thinking Like a Programmer

© 2017 «PageFooterText» Page 11

So for a computer to follow the instructions in the algorithm, the algorithm must be
converted into a language that the computer can understand. An algorithm
expressed in a form that can be understood and executed by a computer is known
as a program.

When the computer obeys the steps in a program, it is said to run or execute the
program. So a computer program is written in a computer language and the
computer works by running or executing the program.

Imagine a robot baking a cake. An instruction in an algorithm to ‘put the cake in
the oven’ would not be detailed enough for the robot (computer) to act on. A robot
chef requires a program with much more detailed instructions about how to move
its arms and fingers when putting the cake in the oven - and how not to topple
over in the process.

Lesson 1 – Thinking Like a Programmer ECDL Computing

Page 12 «PageFooterText» © 2017

1.3 REVIEW EXERCISE
1. Computing is a set of activities that include:

a. performing of calculations or processing of data.
b. following a recipe to make biscuits
c. accurate and careful observation of the stars, over a long period of time.
d. accurate and careful observation of chemical reactions.

2. Computational thinking is:

a. When computers are solving a difficult problem.
b. the process of analysing problems and challenges and identifying possible

solutions to help solve them.
c. Using a computer to do lots of maths.
d. Any activity where a computer and a person work together to do more than

either could on their own.

3. Which method is not a typical part of computational thinking?
a. Abstraction
b. Apprehension
c. Decomposition
d. Pattern Recognition

4. Which of these is a good example of decomposition of a problem?
a. Splitting the task of designing a robot into designing the hand, designing the

power source, deciding on and designing the sensors.
b. Slicing a cake into 6 equal slices
c. Putting an apple into a glass jar and taking photos of it each day to see what

happens.
d. Using a search engine to find the answer to a question.

5. A program is:

a. The detailed rules and regulations of a game or sport
b. An algorithm expressed in a form that is suitable for a computer
c. The collection of laws and regulations that determine what buildings can be

built legally at a particular place.
d. A sequence of instructions for a person to follow, e.g. a recipe for baking a

cake.

6. Which of these is least likely to be a way that algorithms are used in computational
thinking?

a. An algorithm may lead to a computer program that when run solves the
problem

b. An algorithm may lead to a computer program that employs intuition to derive
better solutions.

c. An algorithm may provide a step by step guide for manufacturing something.
d. An algorithm may provide a step by step guide for processes involving people,

money and resources.

7. Here are three recipes:

ECDL Computing Lesson 1 – Thinking Like a Programmer

© 2017 «PageFooterText» Page 13

Chocolate cake:

Set oven to 180oC
Butter two 9” cake pans
Mix ingredients with a whisk for one minute
Transfer mix to cake pans
Bake for 30 mins
Allow to cool
Ice and decorate cake.

Gingerbread men:

Cream the ingredients together
Set oven to 190oC
Roll out the dough to about 1/8” thickness, and cut into gingerbread men
shapes.
Bake until edges are firm, about 10 minutes.

Blueberry muffins:

Set oven to 185oC
Grease 18 muffin cups
Cream butter and sugar until fluffy
Add other ingredients
Spoon into muffin cups
Sprinkle with topping
Bake for 15 to 20 mins.

Which of these is a pattern common to all three recipes?
a. Grease 18 muffin cups.
b. Ice and decorate.
c. Roll out the dough.
d. Set oven to some temperature.

8. For designing a program for cooking for a robot chef to use, which of the following
would be the most relevant detail?

a. The colour of the robot.
b. What quantities of each ingredient to use.
c. Which shop the ingredients were bought from.
d. Whether the programmer is right or left handed.

LESSON 2 –
SOFTWARE DEVELOPMENT
Lesson 2 - Software Development

After completing this lesson, you should be able to:

• Understand the difference between a formal language and a natural
language

• Define the term code; distinguish between source code and machine code

• Understand the terms program description, specification

• Recognise typical activities in the creation of a program: analysis, design,
programming, testing, enhancement

ECDL Computing Lesson 2 – Software Development

© 2017 «PageFooterText» Page 15

2.1 PRECISION OF LANGUAGE

 Concepts

Types of Language:
Natural Language
Spoken languages like English, French or Chinese are natural languages. A
natural language needs context to be clearly understood and avoid ambiguity.

Formal Language
A formal language is strictly structured, with exact and precise rules. It is used in
mathematics, chemical equations and computer programs. It is clear and
unambiguous.

Computer languages are formal languages. One way formal languages can avoid
ambiguity is by using brackets to group words and terms, and by avoiding words
like ‘it’ or ‘he’ or ‘she’ where it might not be clear what ‘it’, ‘he’ or ‘she’ refers to.

Here are three different types of brackets used in formal languages. Each type of
brackets has a different function, and they can be used to define things like which
order a set of steps are expected to be performed in a program.

BRACKET NAME

() Round brackets, or
parentheses.

{ } Curly brackets or braces.

[] Square brackets.

 Steps

Example: Ambiguity with ‘and’ and ‘or’

If you ask someone what flavour of sweets they would like, they might say:
“Blackberry and Lemon or Raspberry and Orange”. You understand the response,
but for a computer to understand the sentence, the words need to be grouped
correctly.

Lesson 2 – Software Development ECDL Computing

Page 16 «PageFooterText» © 2017

For the computer, you need to write (Blackberry AND Lemon) OR (Orange AND
Raspberry)

(Blackberry AND Lemon) OR (Orange AND Raspberry)

Whereas if you write Blackberry AND (Orange OR Lemon) AND Raspberry, the
computer interprets it as:

Blackberry AND (Orange OR Lemon) AND Raspberry

2.2 COMPUTER LANGUAGES

 Concepts

Computer languages are designed for writing computer programs that instruct
computers to follow a sequence of steps to solve a problem. Computer languages
have a smaller vocabulary than natural or spoken languages.

There are many different computer languages. These learning materials use a
popular computer language called Python. Some other common languages are
Java and C++.

OR

AND AND

ECDL Computing Lesson 2 – Software Development

© 2017 «PageFooterText» Page 17

 Concepts

Computer Code
The text of a computer program, written as a series of instructions for a computer
to execute, is known as code. Different computer languages use different styles of
code with different rules and ways of organising instructions, often referred to as
syntax.

The work of writing a program is called programming or coding.

People who write programs are called programmers or coders.

There are two kinds of computer code: source code and machine code.

Source code is the code written by the programmer that humans can understand.
It is typed into a computer, usually as text, punctuation and symbols, which
contains instructions for the computer. If you learn the formal programming
language and its rules (e.g. Python), you can write source code.

Machine code is a series of 1’s and 0’s created by the computer from the source
code that the computers electronic circuits can understand. Creating machine
code from source code is known as compiling or interpreting the source code.

 Steps

Example: Machine code to lock a door
The instruction to lock a door written in source code might look like this:

Lock(door)

Although this isn’t grammatically correct, it does make some sense to people
reading it.

A computer reading the source code instructions sees the letters ‘L’, ‘o’, ‘c’, ‘k’, ‘(‘,
and so on. The instructions aren’t in a format the computer can act on directly.
Instead the computer needs the instructions to be converted into a format that it
can understand and obey.

The computer has electronic circuits that act on certain patterns or combinations
of 1’s and 0’s. Below is an example of what some patterns of 1’s and 0’s might
mean.

Machine Code Meaning of the machine code instruction
0001 Sound alarm
0010 Lock windows
0100 Lock door
0110 Lock windows and door

Lesson 2 – Software Development ECDL Computing

Page 18 «PageFooterText» © 2017

1000 Turn on sprinkler system
1001 Turn on sprinkler system and sound the alarm

Instructions like ‘0110’ are machine code instructions.

In reality the full range of possible machine code instructions for a computer would
be much larger. There would, for example, be many instructions for performing
arithmetic.

Source code is converted into machine code before a computer obeys the
instructions. ‘Lock(door)’ would be translated to 0100 and the computer could
then obey that instruction.

Source Code v Machine Code

In this simple example, one source code instruction ‘Lock(door)’ corresponds to
one machine code instruction, 0100. Usually, a single line of source code
requires several machine code instructions one after the other, in the correct
sequence.

The earliest computer programmers converted the source code into machine code
manually, and created and documented the series of 1’s and 0’s themselves. The
invention of programs to translate source code to machine code made it possible
to write larger and more complex computer programs.

2.3 TEXT ABOUT CODE

 Concepts

As well as writing source code programmers also need to document their work in
the form of text notes. These text notes are not read by the computer, but help the
programmer and other colleagues to understand the different stages of the
program.

0100

Source Code Machine Code

• For people to read • For computer to obey

Lock(door)

ECDL Computing Lesson 2 – Software Development

© 2017 «PageFooterText» Page 19

Text Describing a Program
Programmers write program descriptions and specifications to help everyone
involved in a project to understand what the program was designed to do and
what problem needed to be solved. They can also be used in the evaluation
stage to check that the program is working as desired.

A program description explains what a program is designed to do and how it
works. This could be helpful for other programmers, the user of the end product
and also the marketing department to use for promotion and sales.

A program specification is the set of requirements that outline what a program
will do. Usually, the specification is written before the program. A specification is
more detailed than a description, and it states requirements that can be tested.

For example, a specification might include the requirement “The program SHALL
dim the screen if the computer has not been used for one minute, to save
electricity”. Once the program is written, the program can be tested by leaving the
computer running for a minute and checking that the program does indeed dim
the screen. The following image describes the possible progression in work on a
computer program from development to execution.

Work progression on a computer program

1.1.1 Photos SHALL
be displayed in
mosaic

If(not(photo_ready())) :
 wait

01101101 10110110
11000010 10100

Description

Specification

Source Code

Machine Code

This interactive
holiday app…

Lesson 2 – Software Development ECDL Computing

Page 20 «PageFooterText» © 2017

2.4 STAGES IN DEVELOPING A PROGRAM

 Concepts

Descriptions and specifications can play an important role in the development of a
program.

The following diagram shows some of the main stages and activities in the
creation of a program.

Stages in Program Development

Analysis
This involves defining the problems to be solved more clearly. Analysis is largely
a process of abstraction, listing all aspects of the problem, identifying the relevant
aspects and how they relate to each other.

Design
This involves working out the algorithms (sets of steps to follow) to solve the
problem. This uses decomposition to break the problem down into smaller parts,
and planning the design of the algorithm.

The Specification
document is most

relevant at these stages

Analysis

Design

Programming

Testing

Enhancement

Pattern
Recognition
Abstraction

Decomposition
Algorithmic Design

Programming/
Coding

Evaluation

Generalisation

The Description
document is most

relevant at these stages

ECDL Computing Lesson 2 – Software Development

© 2017 «PageFooterText» Page 21

Programming
This involves writing the program. This includes finding a way to express the
algorithm in the chosen computer language.

Testing
This involves checking that the program actually does what was it was intended
to. Testing can uncover errors in the logic or syntax of the program. These are
covered in more detail in Lesson 15.

Enhancement
This involves adding new features to extend the program's capabilities, improve
its performance or functionality, or to generalise it for use in different situations.

A general program description is typically formulated very early in the project, as
part of deciding the scope of what the program will do.

The program specification is normally drawn up during the design phase. Some
of the requirements in the specification may arise directly from decomposition of
the problem into smaller problems. The program specification is examined during
testing, as each statement about the program’s capabilities must be verified.

In planning enhancements, the program description can be updated to record
plans for extending the program’s capabilities.

Lesson 2 – Software Development ECDL Computing

Page 22 «PageFooterText» © 2017

2.5 REVIEW EXERCISE
1. A formal language is:

a. A language in which it is not possible to make a mistake.
b. A language with defined rules and unambiguous meanings.
c. The best language to use when writing a postcard.
d. Any language that has the words "and" and "or" in it.

2. English, Arabic and Chinese are:

a. Formal languages.
b. Computer languages.
c. Natural languages.
d. Source code.

3. Machine code is.

a. Translated into source code so that a computer can obey the instructions.
b. A method for secure communication between two computers.
c. The 1’s and 0’s that a computer obeys.
d. A written agreement between a programmer and a customer specifying what

a program should do.

4. An algorithm written in the python computer language is an example of:
a. Source code
b. Machine code
c. A program specification
d. A program description

5. A program specification is:

a. The code that the computer runs.
b. The comments in code that a programmer reads.
c. The actual electrical signals in a computer, when a program is running.
d. A description of what a program should do that is used during designing the

program.

6. Match each activity in creating a program, a to e, to their purpose:
a) Testing, b) Design, c) Programming, d) Analysis, e) Enhancement

Improving an existing program.
Clearly defining the problem.
Checking whether the program works correctly.
Expressing the algorithm in the chosen computer language.
Working out an algorithmic approach to solving a problem.

LESSON 3 –
ALGORITHMS
Lesson 3 Algorithms

After completing this lesson, you should be able to:

• Define the programming construct term sequence. Outline the purpose of
sequencing when designing algorithms

• Recognise some methods for problem representation like: flowcharts,
pseudocode

• Recognise flowchart symbols like: start/stop, process, decision,
input/output, connector, arrow

• Outline the sequence of operations represented by a flowchart,
pseudocode

• Write an accurate algorithm based on a description using a technique like:
flowchart, pseudocode

• Fix errors in an algorithm like: missing program element, incorrect
sequence, incorrect decision outcome

Lesson 3 – Algorithms ECDL Computing

Page 24 © 2017

3.1 STEPS IN AN ALGORITHM

 Concepts

Sequencing

Computer algorithms are complex problems broken down into simpler steps or
instructions. In most algorithms, the instructions are obeyed one after the other
in a sequence.

A sequence is a number of simple instructions that should be carried out one
after the other.

In most algorithms the order of the instructions matter. A robot chef would need to
put the cake mixture into the tin before putting it in the oven.

Designing sequences of instructions is a crucial skill in programming. A
programmer needs to make sure that all the required actions are performed in the
right order to accomplish a task or set of tasks. A sequence is the fundamental
method of control in a computer program. The sequence is decided upon in the
design phase of a project where algorithms and flowcharts are used to create the
most efficient and correct sequence of program control.

Input and Output

Instructions often use information from the world outside the computer and do
something with it. Computer programs can receive information to work on via
inputs and give results via outputs.

An input
A value from outside the computer that is needed for the instructions to be
followed. For example: a measurement of temperature, or a number typed on the
keypad of a security/alarm system.

An output
A value calculated, or an action performed, by the computer program, which is
displayed to the world outside of it. For example: a light being switched on or off,
a security alarm being set, or a message displayed on a screen.

 Steps

Example: Inputs and Outputs of a Mobile Phone

A mobile phone takes in information or inputs and processes them and returns
results or outputs.

ECDL Computing Lesson 3 – Algorithms

© 2017 «PageFooterText» Page 25

• The touch screen is an important input method, for example when you use
it to type a message or tap open an application.

• The screen display is an important output, for example when displaying a
list of contacts.

Yes / No Decisions
As you have seen in previous lessons, the order of instructions, or sequence, is
important in computing. In general, instructions are followed one after the other,
but sometimes there are decisions to be made on what to do next. The algorithm
can be designed to ask questions and expect an input to help decide on the next
step.

A yes / no decision is an instruction that chooses the next instruction to obey. It
does this based on whether the answer to a question is yes or no.

 Steps

Example: Waiting for an Oven to Heat Up

Before putting a cake mixture into the oven, the oven needs to be at the right
temperature. An algorithm could include a yes / no decision to determine this. “Is
the oven at the right temperature?” A thermostat will provide the input, yes or no.
If the answer is yes, then it is ok to put the cake into the oven. If the answer is no,
the algorithm will wait a while and ask the question again.

3.2 METHODS TO REPRESENT A PROBLEM

 Concepts

Two techniques to help programmers write programs are pseudocode and
flowcharts. These are used to represent the sequence of steps in an algorithm.
Algorithms expressed in pseudocode or as flowcharts are rarely expressed
precisely enough for a computer to use, but present a series of steps in sufficient
detail for a programmer to see how the algorithm is supposed to operate.

Pseudocode:
Pseudocode is an informal way of representing an algorithm, using written
instructions in natural language, for example English. The steps in the algorithm
are written out as a sequence of instructions. An algorithm written as pseudocode
is intended for a human to read rather than a computer.

Lesson 3 – Algorithms ECDL Computing

Page 26 © 2017

Pseudocode looks like the code that the program will be written in, but is not quite
as precise. If the pseudocode makes sense to read, then the next step is to write
the actual code for the program.

An algorithm for brushing teeth, written as pseudocode could be written as:

Put toothpaste onto toothbrush
Brush top right teeth
Brush bottom right teeth
Brush top left teeth
Brush bottom left teeth
STOP

Flowchart
A flowchart is a pictorial way of representing an algorithm. Flowcharts represent a
series of simple steps with arrows showing the progression from step to step. The
steps are shown using shaped boxes containing text. A flowchart is a
fundamental tool used in the development of computer programs. It allows
developers to outline, step by step how they want to solve a problem or how they
want a program to behave.

The algorithm for brushing teeth could also be shown as a flowchart:

Flowchart for brushing teeth

START

Put toothpaste onto
toothbrush

Brush top right teeth

Brush bottom right teeth

Brush top left teeth

Brush bottom left teeth

STOP

ECDL Computing Lesson 3 – Algorithms

© 2017 «PageFooterText» Page 27

3.3 FLOWCHARTS

 Concepts

Some of the shapes used in a flowchart are shown below:

Flowchart symbols

The shapes represent the following:

Start or Stop
The algorithm starts at the Start box and runs until it reaches a
Stop box.

Process
These boxes contain simple instructions to do something, such
as add two numbers or look up a word in a dictionary.

Input or Output
These boxes are for interaction with the world outside the
computer. For example, an input could be from a movement or
temperature sensor. An output could be an action such as
turning on or off a light.

Decision
Decision boxes allow for alternative choices in what the algorithm
does next. They often have a question in them which will have a
yes or no answer. If the answer is ‘yes’ one route is taken. If the
answer is ‘no’ the other route is taken. This is how algorithms
can go beyond simple sequences of steps.

Connecting the Boxes

These are two additional kinds of flowchart symbols:

Do something Input or
Output IF

Yes

No

Start/Stop Process Input/Output Decision

START or STOP

Arrow Connector

Lesson 3 – Algorithms ECDL Computing

Page 28 © 2017

The arrow and connector are used to connect the flowchart boxes.

Arrow
A directional line drawn to connect two boxes in a flowchart. This
arrow shows the direction of flow in an algorithm. These are
often referred to as flow lines. For example, instructions in a
sequence have arrows between them.

Connector
A small circle in a flowchart that is used to connect two flow lines
together. It shows a jump from one point in the process flow to
another, for example when answering a “Yes/No” question.

 Steps
Example: Flowchart for the 347347 'Magic Trick'

Flowchart for a numerical trick

Start

Think of a 3 digit
number like 347

Write the number out
twice to make a 6 digit

number like 347347

Divide by 13. It will
divide exactly with no

Divide by 11. It will
divide exactly with no

remainder.

Divide by 7. It will divide
exactly with no

remainder.

Stop

You should be back to
your original number.

ECDL Computing Lesson 3 – Algorithms

© 2017 «PageFooterText» Page 29

This is a flowchart for a numerical magic trick. This flowchart shows a simple
sequence, with no decision boxes. We begin the process from the Start box and
continue following the flow lines completing the instructions in each of the boxes
until we reach the Stop box.

Example: Flowchart for Baking a Cake

This flowchart represents an algorithm for baking a cake. It has a decision box in
it. The decision box determines whether the cake is ready to take out of the oven,
and if not instructs the chef to wait until it is.

“Is cake baked?” is an input to the algorithm and has the input/output shaped box.

Flowchart for baking a cake

START

Set Oven to 180° C

Mix Ingredients

Put cake in oven

Check whether
cake is baked Wait

Cake is baked?

Take cake out of oven

STOP

Lesson 3 – Algorithms ECDL Computing

Page 30 © 2017

Example: Flowchart for choosing a Mobile Phone Game
This flowchart shows the sequence of actions for choosing a mobile phone game.
Each of the diamond shaped boxes has a question in it. The answer to the
question can be yes or no. The answer determines which box to go to next.

Flowchart for choosing a mobile phone game

Example: Flowchart for Getting up in the Morning

Make a flowchart for getting up in the morning, having breakfast, and getting to
school.

HINTS:

1. Start with a sequence of actions and write those steps as pseudocode, in an
ordered list.

2. Take some of the steps and decompose them into smaller steps detail. For
example, if you have a step called ‘make breakfast’ - that can be broken down
into smaller steps like “put bread in toaster”.

3. Represent this more detailed sequence as a flowchart.

Yes Yes

Yes Yes Yes

No No

No

No

No

START

STOP

STOP

Find a Mobile
Phone Game

Choose a
different game

Does it have
a free trail?

Choose a
different game

Try it

Do I want
to buy it?

Do I have
enough money?

Buy

Do I have
enough money?

Do I want to
upgrade to the
paid version?

Is it any good?

Make do with
the free version

ECDL Computing Lesson 3 – Algorithms

© 2017 «PageFooterText» Page 31

4. Make the flowchart more interesting, by introducing variation. For example,
how does the weather affect getting to school? The variations may depend
on questions like:

• Is it raining?
• Am I late for school?

5. Add decision boxes for these questions, with different steps if the answer is

yes or no.

3.4 PSEUDOCODE

 Concepts

Instead of creating a flowchart, an algorithm can be represented in pseudocode.

Pseudocode is a way to informally describe how an algorithm operates. It
combines informal natural language (e.g. English) with some of the structure of
programming languages.

 Steps

Example: Pseudocode for the 347347 'Magic Trick'

The numerical magic trick flowchart could be written as pseudocode as follows:

Think of a 3 digit number like 347
Write the number out twice to make a 6 digit number like 347347
Divide by 13
Divide by 11
Divide by 7
You should be back to your original number.
STOP

Example: Pseudocode for Baking a Cake

Pseudocode for baking a cake is shown below:

Set oven to 1800C
Mix ingredients
Put cake in oven
Check whether cake is baked and if it isn’t

Wait
Take cake out of oven

STOP

Lesson 3 – Algorithms ECDL Computing

Page 32 © 2017

Pseudocode is written using the structure and some conventions of programming
languages. The word ‘Wait’ is indented, which indicates that it only happens
while the cake isn’t baked.

3.5 FIXING ALGORITHMS

 Concepts

When writing algorithms it is easy to make mistakes such as leaving out steps,
putting steps in the wrong order, or making incorrect decisions. These errors must
be corrected.

Here are some common errors and how to fix them.

1. Incorrect Sequence

Writing instructions in the wrong order is known as an incorrect sequence.

Here is an algorithm for brushing teeth, written in pseudocode. The instructions
are in the wrong order. The algorithm can be fixed by moving ‘Put toothpaste
onto toothbrush’ to the top.

Brush Top Right Teeth
Brush Bottom Right Teeth
Brush Top Left Teeth
Brush Bottom Left Teeth
Put toothpaste onto toothbrush
STOP

2. Incorrect Decision Outcome

Here is an algorithm for baking a cake and taking it out of the oven when it is
baked and not before.

Set oven to 1800C
Mix ingredients
Put cake in oven
Is cake baked?

Wait
Take cake out of oven
STOP

ECDL Computing Lesson 3 – Algorithms

© 2017 «PageFooterText» Page 33

The decision to wait could be wrong because there is no test to see if the cake is
actually baked. To correct a possible incorrect decision outcome, an extra line of
pseudocode is needed:

Set oven to 1800C
Mix ingredients
Put cake in oven
Test with Fork
Is cake baked?

Wait
Take cake out of oven
STOP

3. Missing Program Element

Here is an algorithm for baking a cake which is missing some important steps.

Set oven to 1800C.
Wait for oven to heat up.
Take cake out of the oven.
STOP

The algorithm can be fixed by adding the missing steps:

Set oven to 1800C.
Mix ingredients
Put the mixture into the cake tin
Wait for oven to heat up.
Put cake tin into oven
Wait for cake to cook.
Take cake out of the oven.
STOP

Lesson 3 – Algorithms ECDL Computing

Page 34 © 2017

3.6 REVIEW EXERCISE
1. A sequence is:

a. A number of instructions that can be obeyed in any order.
b. A number of instructions that should be obeyed one after the other.
c. An analysis of a problem to be solved.
d. A collection of recommendations for enhancing a computer program.

2. Which of these is not used to represent an algorithm?

a. A computer program.
b. Flowchart.
c. Pseudocode.
d. Pseudoscience.

3. Match the following symbols to their names:

Arrow
Decision
Start or Stop
Process
Input or Output
Connector

4. In the following pseudocode which instruction is obeyed immediately after ‘Mix
Ingredients’?

Set oven to 1800C
Mix ingredients
Put cake in oven
Check whether cake is baked and while it isn’t

Wait
Take cake out of oven
STOP

a. STOP
b. Wait
c. Take gingerbread out of oven
d. Put cake in oven

5. The following program is supposed to drain water from a washing machine. What

error does it have?
Turn on drainage pump

ECDL Computing Lesson 3 – Algorithms

© 2017 «PageFooterText» Page 35

Check water level
While there is no water left

Wait
Turn off drainage pump.
STOP

a. Missing instruction
b. Incorrect sequence
c. Incorrect decision outcome
d. Incorrect indentation

LESSON 4 -
GETTING STARTED
Lesson 4 - Python Expressions

After completing this lesson, you should be able to:

• Start and run a program

• Enter code

• Create and save a program

• Open and run a program

ECDL Computing Lesson 4 – Getting Started

© 2017 «PageFooterText» Page 37

4.1 INTRODUCING PYTHON

 Concepts

This course uses Python, a flexible and widely used computer language that can
create simple or complex programs. Python runs faster than most programming
languages as there is no delay between requesting the program to run and it
actually starting. Also, Python provides a powerful set of commands, the
instructions of any computer language.

These learning materials use the Python IDLE programming environment, which
allows you to write, edit and run code, and save your programs as files for
retrieving later. It incorporates the command line environment, the Python Shell.

Python is called an interactive programming language, which means that when
you enter a command the system evaluates the command, obeys it and prints or
displays the result.

In programming, a prompt appears on the screen to show that the computer is
ready to accept inputs. The Python prompt consists of the three characters >>>.
When this appears, you can start to type your code.

4.2 EXPLORING PYTHON

 Concepts

Launch Python
1. Locate the Python Shell icon on the computer desktop, or in your program

files.

Lesson 4 – Getting Started ECDL Computing

Page 38 © 2017

2. Double click on the icon. This will start an interactive window, as shown
below:

3. Click the mouse cursor just after the prompt >>>. This is the signal to enter
code or instructions for Python to run on the computer.

4. Type print(“First Steps in Coding”)

5. Press the Enter key.

ECDL Computing Lesson 4 – Getting Started

© 2017 «PageFooterText» Page 39

6. View the result.

7. Click X to close this window.

How the program works

• In the previous example, Python understood and acted on the code which
instructs it to display the text inside the inverted commas onto the screen.

• The result is that the words First Steps in Coding are displayed on
screen.

• In Python, the print() command is used to output information to the screen.

Let’s try another instruction:

1. Locate the Python Shell icon on the computer desktop, or in your program
files.

2. Double click on the icon. This will start the interactive Shell window, as

shown below:

3. Click the mouse cursor just after the prompt >>>. This is the signal to enter

code or instructions for Python to run on the computer.

Lesson 4 – Getting Started ECDL Computing

Page 40 © 2017

4. Type asdf

5. Press Enter

6. View the result. In this example, Python does not understand the letters
asdf. Observe the four lines in red. Python provides error messages when
it doesn’t understand what has been typed in. Usually the last line of the
error message has the most useful information about the error, in this case
“ ‘asdf’ is not defined ”.

7. Click X to close this window.

4.3 SAVING A PROGRAM

 Concepts

When you write some code, it is good practice to save it so that you can use it
again. Python programs have the file extension .py. The .py extension at the end
of the name tells the computer it is a python program, for example,
MagicTrick.py.

Create and Save a Program
1. Open Python. Click File, New Window as shown below.

ECDL Computing Lesson 4 – Getting Started

© 2017 «PageFooterText» Page 41

2. A new untitled window is created. Click in the main white area of the
untitled window.

3. Type in the following text and then press enter.

print('do my work for me')

4. Click File, Save As and observe the dialogue box. Notice:

• The default location for saving Python Files is Python 32. This is fine for
now, but you can change this depending on the project.

• The file type displayed is Python files (*py,*pyw)

Lesson 4 – Getting Started ECDL Computing

Page 42 © 2017

5. In the file name dialog that appears, type TryIt.py.

6. Click the Save button.

7. Notice the window title changes to ‘TryIt.py’. This is the name of the
program or file.

8. Click the X to close the window and the program.

Open and Run an Existing Program

1. Start Python

2. Click File, Open.

ECDL Computing Lesson 4 – Getting Started

© 2017 «PageFooterText» Page 43

3. In the dialog that appears, select the file name “TryIt.py” or type in the file
name.

4. Click the Open button. The saved program will open.

5. To run the program click on Run in the menu bar and then click Run
Module:

Lesson 4 – Getting Started ECDL Computing

Page 44 © 2017

6. This is what you should expect to see when the program is run:

7. Pressing the F5 key on the keyboard will also run a program. Close the
results window by clicking the X in the top right corner. Return to your
program and this time press F5 on the keyboard to run the program. View
the results.

ECDL Computing Lesson 4 – Getting Started

© 2017 «PageFooterText» Page 45

4.4 REVIEW EXERCISE
1. How do you run a program in Python?

a. Type run.
b. Press F5.
c. Type go.
d. Type start.

LESSON 5 -
PERFORMING CALCULATIONS
Lesson 4 - Python Expressions

After completing this lesson, you should be able to:

• Recognise and use arithmetic operators. +,-,* and /

• Know how parentheses affect the evaluation of mathematical expressions

• Understand and apply the precedence of operators in complex
expressions

• Understand how to use parenthesis to structure complex expressions

ECDL Computing Lesson 5 – Performing Calculations

© 2017 «PageFooterText» Page 47

5.1 PERFORMING CALCULATIONS WITH PYTHON
 Concepts

Operators
In common with most computer languages, Python can perform mathematical
calculations, or evaluate mathematical expressions, for example:

10+12+15.

It uses the symbol * for multiply and / for divide rather than using x and ÷.

NOTATION MEANING

3 * 4 3 multiplied by 4

3 / 4 3 divided by 4

3 + 4 3 plus 4

3 - 4 3 minus 4

In Python:

7 multiplied by 9 is written as 7 * 9
63 divided by 3 is written as 63 / 3

The spaces between the numbers are optional and 7*9 will work just as well as 7
* 9.

The mathematical symbols like *, /, + and -, used in programming to perform
calculations are called operators.

Parentheses Matter
Mathematical expressions in Python can also contain parentheses, also known as
brackets, for example:

10-(6-4)

If we evaluate this expression from left to right, ignoring the parentheses, the
solution would be 0.

10-(6-4) = 0

However, this is incorrect.

Lesson 5 – Performing Calculations ECDL Computing

Page 48 © 2017

Parentheses indicate what should be calculated first. In Python, as in maths, what
is inside the parentheses is calculated first. To evaluate an expression like 10-(6-
4) Python breaks it down as follows:

First: 6-4=2

Then: 10-2=8

So, 10-(6-4)=8

5.2 PRECEDENCE OF OPERATORS

 Concepts

When there are parentheses in an expression, it is clear to Python what order to
calculate expressions. When there aren’t parentheses, there is an accepted order
of operations. A rule of formal language determines the order in which the
operators are applied. The rule is called the Precedence of Operators. In most
computer languages the sequence or order in which operators are applied is
multiplication, division, addition, subtraction.

Operators * and / are applied before operators + and -.

Here are some examples:

1+7+2+3

1+7 = 8, 8+2 = 10, 10+3 = 13 answer: 13 Correct

2*2*3+4

2*2 = 4, 4*3 = 12, 12+4 = 16 answer: 16 Correct

4+3*2=?

You might think the answer should be 14, because:

4+3 = 7, 7*2 = 14

However, because of precedence of operators, multiplication is done first. 4+3*2
is calculated exactly as if it had been written 4+(3*2). So:

4+(3*2) = 4+6, and 4+6 = 10 answer: 10 Correct

31*7+112*2

The two multiplication parts are done first, then the addition.

31*7+112*2 = 217+224, and 217+224 = 441

ECDL Computing Lesson 5 – Performing Calculations

© 2017 «PageFooterText» Page 49

Using Python as a Calculator
Do the same calculations as in the ‘Precedence of Operators’ section using
Python:

1. Start Python. Position the cursor after the prompt.

2. Type in the expressions (calculations) after the prompts. Press Enter after
typing in each one.

3. Check the results.

Example: Calculating the cost of tins of paint

If red paint costs €31 per litre and gold paint costs €112 per litre, then the cost of
7 litres of red paint and 2 litres of gold paint can be written as:

 31*7+112*2

In this case, you can see that it is important to calculate what each colour paint
costs first, and then getting the total cost.

So, (31*7)+(112*2) gives the correct overall price, whereas evaluating from left to
right does not.

Parentheses are not needed here because of the order of operations.

However it is always possible to put additional parentheses in to override the
order of operations. Parentheses have priority over any rules about order of
operations.

Lesson 5 – Performing Calculations ECDL Computing

Page 50 © 2017

5.3 REVIEW EXERCISE
1. How do you get Python to evaluate an expression?

a. Type 'evaluate', and then type in the expression.
b. Break it down into smaller pieces first.
c. Type in the expression after the >>> prompt.
d. Use a calculator instead.

2. Which of the following expressions is used to multiply two numbers in python?

a. 4 + 7
b. 4 x 7
c. 4 # 7
d. 4 * 7

3. Evaluate the expression 3*4*2+8 using the Operator Precedence rule and select
the appropriate answer below:

a. 24
b. 32
c. 104
d. 120

LESSON 6 –
DATA TYPES AND VARIABLES
Lesson 4 - Python Expressions

After completing this lesson, you will be able to:

• Use different data types, character, string, integer, float, Boolean

• Define the programming construct term variable. Outline the purpose of a
variable in a program

• Define and initialise a variable

• Assign a value to a variable

• Use data input from a user in a program

• Use data output to a screen in a program

Lesson 6 – Data Types and Variables ECDL Computing

Page 52 © 2017

6.1 DATA TYPES

 Concepts

In computing all kinds of data are used in order to solve problems and create
information. The type of data determines how it is stored in the computer’s
memory and what can be done with it.

For example, your age is stored as a number and we can perform mathematical
calculations on it, like compare it to that of your friend. And your name is stored as
text.

In computing data types are used to determine how to store data and what
operations to carry out on the data.

The Python data types you will use most often are: Integer, float, string and
Boolean.

Most programming languages have standard data types just with slightly different
names. For example the ‘string’ data type used in Python is sometimes referred to
as a ‘character’ data type in other languages. The character data type can also be
used to define letters or characters such as 'a' 'b' 'c' '@' etc.

Data Types in Python
Integer
Describes or defines a whole number of any size, positive or negative, such as 1,
3, 9,999,999, -712 or 0.

Float
Describes or defines a decimal number such as 11.456, -71.3, 29.0.

Floats are also used to represent some very large or small numbers in scientific
notation. For example, 5.0e30, which means 5 followed by 30 zeroes, or 1.7e-6
which is 0.000017, which means 1.7 divided by 1 followed by 6 zeros.

String
Describes or defines a piece of text, or ‘string’ of characters. For example the
name of a person, such as ‘John Smith’. String values often arise from using the
input() command.

Boolean
Describes or defines a value which is either True or False. Boolean data types
can only ever be one of these two values. Boolean values most often arise from
comparison of numbers.

ECDL Computing Lesson 6 – Data Types and Variables

© 2017 «PageFooterText» Page 53

For example the expression:
3 < 4 gives the boolean value True.

6.2 VARIABLES

 Concepts

A variable is used in code to represent a piece of data so that the data can be
used several times in a program. A variable is like a placeholder for actual values.
It can hold the value and then retrieve it for use later.

Assigning a value to a variable

A variable can represent different types of data or values, such as a number or a
string. In the code you need to specify what value the variable will represent and
this is known as assigning a value to a variable.

In the following example, the value 3 is assigned to the variable named x.

x=3

In this case, each time the variable x is used in the program it will represent 3.

A variable can also hold a string, which is a collection of characters. In the
following example, the value Good Morning, which is a string rather than a
number, is assigned to the variable named Greeting.

Greeting = 'Good Morning'

In this case, each time the variable Greeting is used in the program it will
represent Good Morning. After the assignment the variable name Greeting can
be used in place of the string 'Good Morning'.

Using Print() for Output
Python outputs the contents of a variable to the screen, using the print()
command.

So in the example x=3

The command print(x) will print the value 3 to the screen.

The command print(x+2) will print the value 5 to the screen.

Lesson 6 – Data Types and Variables ECDL Computing

Page 54 © 2017

And in the example Greeting = 'Good Morning'

The command print(Greeting) will print the value 'Good Morning' to the screen.

Defining, Initialising and Updating Variables
Defining Variables

Defining a variable means defining in the code what data type the variable will
hold, for example, a number (e.g. integer, float) or a string. In Python you do this
the first time you assign a value to a variable. Python determines that the variable
will hold the data type of the assigned value.

If you assign the number 3 (i.e. the value) to the variable x, Python will assume
that x will always represent a numeric value.

x=3

If you assign the string ‘country’ to the variable q, you are telling Python that q will
always represent a string. You use inverted commas around the text to indicate
that it is a string data type.

q=‘country’

In the example, the piece of text is enclosed in inverted commas, which indicates
that it is the string data type. Any characters enclosed in inverted commas are
considered a string, even a number. In the following example 12 is a string not a
number:

Age = ‘12’

Initialising Variables

You need to assign an initial value to a variable before you can use it. The first
time a value is assigned to a variable is called initialisation of the variable.

If you try to apply a command to a variable before it has been initialised you will
get an error message. Before a value is assigned to a variable, the variable is
known as uninitialised.

Updating Variables

The value of a variable can be updated by assigning a new value to it. You update
the variable and it is automatically updated wherever it is used throughout the
program. This is an important reason for using variables as you only have to make
one update to update multiple occurrences. A variable always holds the most
recent value that has been assigned to it.

ECDL Computing Lesson 6 – Data Types and Variables

© 2017 «PageFooterText» Page 55

Consider a variable called x that is currently 3. The assigned value can be
changed to 7 by typing the code:

x=7

The command print(x) will now print the value 7.

The command print(x+2) will now print the value 9.

Example: Working with Variables

1. Open Python.

2. Before initialising the variable x, type in the command print(x).

3. Observe the error message.

4. Initialise the variable x to 3.

5. Type the print command again.

6. Update the variable x to 7.

7. Print the new value.

Lesson 6 – Data Types and Variables ECDL Computing

Page 56 © 2017

6.3 BEYOND NUMBERS

 Concepts

Working with Strings

As well as adding numbers together, you can join strings and characters together.
To do this in Python, you can use the + symbol.

For example, initialise the variable Name to “David”, and Question to “What is
your age?”

 Name= “David”

 Question = “What is your age “+Name+”?”

This returns the result:

‘What is your age David?’

Note the blank spaces in the string. Without the spaces at the ends of the string
there would be no space between the word you and the word David and the
question would look like this:

‘What is your ageDavid?’

Changing strings to numbers

Sometimes a string needs to be converted to a number (e.g. an integer or float).
For example if the variable called Age is the string ‘12’,

Age = ‘12’

then Age +1 will give an error, because a number can't be added to a string.

ECDL Computing Lesson 6 – Data Types and Variables

© 2017 «PageFooterText» Page 57

To fix that, you can convert the variable Age to an integer as follows:

Age = int(Age)

Using Input() for User Input

You can write code that asks a user to enter some information in the form of a
string, for example their name.

In Python you use the input() command to prompt the user to enter a string .

The input() command is an instruction in Python that requests the user to enter
information and the program waits until the information is entered.

Example: Input and Output a Name.

1. Open Python and create a new file.

2. Type in the following code.

3. Run the program.

4. Reply to the prompt “What is your name?” by typing in your name.

5. Press Enter.

6. Save the program as Myname.py.

Lesson 6 – Data Types and Variables ECDL Computing

Page 58 © 2017

7. Click X to close the window.

How the program works

• The user is prompted to enter a string, in this case their name, using the
input() command.

• The program waits until the information is entered.

• The variable ‘Name’ is initialised to contain the name entered by the user.

• The print() command is used to output the text “Your name is:” followed by
the contents of the variable ‘Name’ to the screen.

Example: Working with Strings

1. Open the previous example, MyName.py, using the steps you learned
earlier.

2. Modify the example so that it looks like this:

3. Run the program.

4. Answer the first question and press Enter.

5. Answer the second question and press Enter.

ECDL Computing Lesson 6 – Data Types and Variables

© 2017 «PageFooterText» Page 59

6. Modify the program so that it now reads:

7. Now run the program again.

8. Answer the two questions.

9. Save and close the file.

Lesson 6 – Data Types and Variables ECDL Computing

Page 60 © 2017

6.4 REVIEW EXERCISE

1. Which statement about variables is correct?

a. Variables never change their value.
b. A variable name must use lower case letters only.
c. Variables must be initialised to zero.
d. Sometimes a variable can hold a Boolean value.

2. What is the purpose of a variable?

a. To make it easier to change a program in the future.
b. To tell Python how to combine two numbers
c. To remember some value that will be used again later in the program.
d. To ensure that the source code is indented correctly

3. Which of these Python statements initialises a variable?

a. Initialise().
b. x=3.
c. start().
d. finish().

4. In Python, if a variable named ‘length’ has the value 200, and the instruction

‘length=400’ is obeyed, what happens?

a. Python gives an error message, because you can’t change the value of a
variable.

b. Python gives an error message, because you can’t change 200 to 400.
c. Python assigns 400 to length and length now has the value 400.
d. Python adds 400 into length and length now has the value 600.

5. In Python, the input() function:

a. Is used when you want to input a USB key
b. Can be used with a prompt to make input faster, or without a prompt to make

input slower.
c. Returns a string.
d. Must be the first function you call in a program.

6. In Python, the output() function

a. Is used when you want to change the data type
b. Is used to display a result
c. Is the last command in a program.
d. Must be the first function you call in a program.

7. A data type which has only two values is called

a. Integer

ECDL Computing Lesson 6 – Data Types and Variables

© 2017 «PageFooterText» Page 61

b. Float
c. String
d. Boolean

LESSON 7 –
TRUE OR FALSE
Lesson 5 - Python Code

After completing this lesson, you should be able to:

• Use Boolean logic expressions in a program

• Recognise types of Boolean logic expressions to generate a true or false
value like: =, >, <, >=, <=, <>, !=, ==, AND, OR, NOT

• Understand the precedence of operators and the order of evaluation in
complex expressions

ECDL Computing Lesson 7 – True or False

© 2017 «PageFooterText» Page 63

7.1 BOOLEAN EXPRESSIONS

 Concepts

In everyday life, you often check if something is True or False before deciding
what to do next. This concept is also used in computer programs where conditions
are checked to see if they are True or False before decisions are made on what
to do next. For example:

Is it cold outside?

True – wear a coat

False – leave the coat at home

Is the cake baked?

True – take it out of the oven

False – bake it for 5 more minutes and re-check

True or False in Flowcharts

In a flowchart the checks or tests are represented by decision boxes with
outcomes Yes or No.

Computer programs work with the outcomes True and False rather than Yes or
No.

Put cake in oven

Check whether
Cake is baked

Cake is baked?

Wait

Take cake out of oven

Yes

No

Lesson 7 – True or False ECDL Computing

Page 64 © 2017

True and False are important concepts in computing because we need a way to
test if certain conditions exist in order to control what happens next in the
program.

In computing, this logic test is called a Boolean expression. A Boolean
expression results in a Boolean value that is either true or false.

One way in which Python programs use Boolean expressions is to test the size of
a numerical value against another value and give a ‘True’ or ‘False’ result. It
carries out this test by using a comparison operator. A comparison operator
compares the values on either side of them and decide the relation among them.
They are sometimes referred to as relational operators.

99 > 7

Here the operator ‘>’ compares the values 99 and 7 to see if the value on the left
is greater than the value on the right. If so, the result is True, otherwise the result
is False.

So: 99 > 7 is True but 6 > 7 is False.

7.2 COMPARISON OPERATORS

 Concepts

Comparison operators are a type of Boolean logic expression used to compare
values and decide if the result is true or false.

Table of Comparison Operators

There are six comparison operators. In the table below X and Y are variables
holding numerical values:

NOTATION MEANING

X > Y X is greater than Y

X < Y X is less than Y

X >= Y X is greater than or equal to Y

X <= Y X is less than or equal to Y

X == Y X is equal to Y

ECDL Computing Lesson 7 – True or False

© 2017 «PageFooterText» Page 65

X != Y X is not equal to Y

Note: Some other languages may use <> as not equal to and = as equal to.
Python 3.x doesn’t use <> and it uses == instead of a single =.

Example: Comparison Operators

1. Open Python.

2. Enter the examples below to check your understanding of the comparison
operators.

3. Make up your own examples. Anticipate what the answer to each should
be. See whether the answers, True or False, are what you expect them to
be.

7.3 BOOLEAN OPERATORS

 Concepts

Boolean operators are the words and, or, not which are another Boolean logic
expression used to combine Boolean values like True and False together to give a
final result.

There are three basic Boolean operators:

Lesson 7 – True or False ECDL Computing

Page 66 © 2017

and
 - Combines two Boolean values and gives a result - True if both values are True,
otherwise False

Expression Result
True and True True
True and False False
False and True False
False and False False

or
Combines two Boolean values and gives a result - True if either one or both
values are True, otherwise False.

Expression Result
True or True True
True or False True
False or True True
False or False False

not
Converts a single Boolean value from True to False, or False to True.

Expression Result
not True False
not False True

Boolean expressions can include the use of both comparison operators and
Boolean operators. This is an example:

x < 3 and y < 12

In such mixed expressions, the comparison operators are evaluated before the
Boolean operators. That’s because of the rules of operator precedence which
we’ll come back to later in this lesson.

Example: Boolean Expressions

1. Open Python.

ECDL Computing Lesson 7 – True or False

© 2017 «PageFooterText» Page 67

2. Try to evaluate Boolean expressions in Python.

3. Think of some combinations to make sure that you understand what and,
or and not do.

4. Build more complex Boolean expressions with parentheses, remembering
that the expression within the parentheses is worked out first.

5. Use Python to evaluate some Boolean expressions that arise from

comparing numbers.

Lesson 7 – True or False ECDL Computing

Page 68 © 2017

7.4 BOOLEANS AND VARIABLES

 Concepts

Initialising and assigning values to variables applies to numbers, strings and
Booleans.

Consider the instruction:

Y = 200
This initialises the variable called Y to the numeric value 200.

Consider the instruction:

A = False
This initialises the variable called A to the Boolean value False.

Consider the instruction:

name=input(“What is your name?”)
This initialises the variable called name to a string in response to the question,
"What is your name?"

Here is what happens:

i. The user is prompted with the words "What is your name?"

ii. The user types in a string.

iii. The string value is assigned to the variable called name.

The next example uses a Boolean variable. The variable is called True_or_false.

Notice that underscores are being used between the words of the variable name.
Python treats an underscore within a variable name like other letters, so
True_or_false is one variable. If you use spaces instead of underscores, Python
will treat the words as three separate things and give an error.

Consider the instruction:

True_or_false = Age > 12
It compares Age with 12 and puts the Boolean result into the variable
True_or_false.

ECDL Computing Lesson 7 – True or False

© 2017 «PageFooterText» Page 69

Example: Working with Booleans

1. Open the program Myname.py, and modify it as shown below.

2. Run the program.

Type in a name.

Type in some age greater than 12.

3. Run the program again.

Type in a name.

Type in some age less than 12 to see a different result.

Lesson 7 – True or False ECDL Computing

Page 70 © 2017

7.5 PUTTING IT ALL TOGETHER

 Concepts

Parentheses in Boolean Expressions

We have seen in earlier lessons that parentheses are important in numerical
expressions. They are also important in Boolean expressions.

(A and B) or C is not the same thing as A and (B or C)

Let’s assume for example that A is False, B is True and C is True. Putting these
values into the two expressions gives different results:

(A and B) or C evaluates to True

A and (B or C) evaluates to False

To confirm this, type in both Boolean expressions into Python, using it as a
calculator as shown in the next example.

Example: Parentheses in Boolean Expressions

1. Open Python. Type in the following expressions:

Note how the use of parentheses changes the result of the expression A and B or
C.

Operator Precedence, including Booleans

The table below is a partial list of the order in which the most important operators
are applied, or take precedence. In the list below, the operators at the top of the
list are applied before operators at the end.

ECDL Computing Lesson 7 – True or False

© 2017 «PageFooterText» Page 71

Symbol Operation

* / Multiply and divide

+ - Addition and subtraction

<, >, <=, >=, ==, !=, Comparison operators

not Boolean not

and Boolean and

or Boolean or

For example, in the absence of parentheses * is evaluated before +, as * is before
+ in the list. Likewise, ‘and’ is evaluated before ‘or’, as 'and' is before 'or' in the
list.

An expression like:

A or B and C
Will be evaluated as:

A or (B and C)

A complex expression such as:

x < 2 or 1+3*x > 2+4/2 and not x < y
Would be calculated as:

(x < 2) or (1+(3*x) > 2+(4/2) and (not (x < y)))

Even experienced programmers sometimes forget exactly what order the
operators are evaluated in. In an expression as complex as the above it is usual
to include some parentheses to make the intention clearer:

x < 2 or ((1+3*x > 2+4/2) and not x < y)

The operator precedences for *, /, + and - are used so frequently that it is rare to
use parentheses to clarify the order of evaluation.

Lesson 7 – True or False ECDL Computing

Page 72 © 2017

7.6 REVIEW EXERCISE
1. Which of the following is a python expression to add three numbers together and

divide the result by 3?
a. 4+5+6/3
b. 4+5+6÷3
c. (4+5+6)/3
d. (4+5+6)÷3

2. The expression '3<x and x<=7' is true if x is:

a. 3,4,5,6 or 7
b. 2,3,4,5 or 6
c. 4,5, or 6
d. 4,5,6 or 7

3. In Python, which expression could give a different result to the other three?
a. a < b < c
b. c > b > a
c. a < b or b < c
d. a < b and b < c

LESSON 8 –
AGGREGATE DATA TYPES

After completing this lesson, you should be able to:

• Understand aggregate data types

• Use aggregate data in a program like: list and tuple

Lesson 8 – Aggregate Data Types ECDL Computing

Page 74 © 2017

8.1 AGGREGATE DATA TYPES IN PYTHON

 Concepts

As well as standard data types such as int, string and Boolean, there is another
category of data type called aggregate data types. Aggregate data types hold
multiple items, for example, a list of names. Most programming languages deal
with aggregate data types in some way for example, an array contains a group of
elements of the same data type.

Two Python aggregate data types are list and tuple.

List
A collection of values. Lists can change by adding items to or removing items from
them or changing an item in a list. Python can display an entire list of values. It
can also retrieve items from a list. (The Python ‘list’ aggregate data type fulfils the
role of an ‘array’ in other programming languages.)

Tuple
A tuple is just like a list, except once it has been created it can’t be changed by
rearranging, adding or removing items or modifying individual items.

While the restriction on tuples might appear to make them less useful than lists,
tuples have two important advantages:

1. Retrieving items from Tuples is faster than retrieving items from lists.

2. A programmer reading code for tuples will not need to check if values were
changed.

The items in a list or tuple are called elements.

An element in a list or tuple can be selected by giving the name of the list or tuple
and then the number of the element in square brackets. For example, element 3
of the list called pets is:

pets[3]

Elements are referenced by numbers starting from zero, so in the list:

[“cat”,“dog”,“hamster”,“goldfish”,“rabbit”,“turtle”]

pets[0] = cat

pets[1] = dog

pets[3] = goldfish

ECDL Computing Lesson 8 – Aggregate Data Types

© 2017 «PageFooterText» Page 75

8.2 LISTS

 Concepts

Python has some built-in methods for working with lists. For example, this
command will sort the list called pets:

pets.sort()

Example: Working with Lists

1. Open Python.

2. Create a list called pets, by enclosing the elements in square brackets, as
you see in the screenshot below.

3. Explore individual elements of the list by using numbers in square brackets
as shown.

Example: Sorting a List in Python

1. Open Python.

2. Create a program file called ManyNames.py.

3. Type in the program code as below, using the names of some friends if you
like, rather than the names given here.

4. Run the program.

Lesson 8 – Aggregate Data Types ECDL Computing

Page 76 © 2017

8.3 TUPLES

 Concepts

Tuples in Python

Tuples are created in the same way as lists, but using round brackets instead of
square brackets.

You cannot sort a tuple with the sort() command, as Python does not allow
rearrangement of a tuple’s elements.

If a variable is assigned to a tuple, Python still can’t make changes to that tuple.
Python can however assign a new variable to the tuple i.e. replace the tuple with a
new one. This sequence shows an example of how you might replace one tuple
with a new one:

animal_tuple = (‘cat’,’dog’,’pig’)
animal_tuple = (‘elephant’, ‘tiger’, ‘giraffe’)

The second tuple replaces the first.

One common use for a tuple is to hold the x and y position of a point on the
screen. Instead of having two variables, one for x, and one for y, a single tuple
variable can hold both values. When the x and y values are needed, they can be
extracted from the tuple.

(A list could be used in the same way as a tuple to hold the x and y position of a
point on the screen but a tuple is more efficient.)

Example: Attempting to Sort a Tuple:

1. Open Python.

2. Use the code shown below to create a tuple containing names of fruit.

3. Show the tuple's value by typing 'fruit'.

ECDL Computing Lesson 8 – Aggregate Data Types

© 2017 «PageFooterText» Page 77

4. Attempt to sort the tuple.

Example: Extracting x and y from a Tuple

1. Open Python.

2. Use the code shown to create a tuple containing 40 and 150.

3. Extract x and y from the tuple.

4. Show the value of x and y.

Lesson 8 – Aggregate Data Types ECDL Computing

Page 78 © 2017

8.4 REVIEW EXERCISE
1. A list variable can hold:

a. Just a single number between -128 and 128.
b. A video file in the format normally used for display on a computer.
c. An audio file in the format normally used for ring tones.
d. A list of student names that can be sorted using the function sort().

2. What is the Python data type of each of the following values?
a. 37
b. ‘Sarah’
c. (100, 20, 25)
d. [100, 20, 25]
e. 15.9
f. 9999999999999999999999999999999999
g. -37.0
h. [‘David’, ‘Sarah’, ‘Ann’, ‘Bill’]
i. [‘Red’, ‘Green’, ‘Blue’]
j. ‘[100, 20, 25]’

LESSON 9 –
ENHANCE YOUR CODE
- Python Code

After completing this lesson, you should be able to:

• Describe the characteristics of well-structured and documented code like:
indentation, appropriate comments, descriptive naming

• Define the programming construct term comment. Outline the purpose of a
comment in a program

• Use comments in a program

Lesson 9 – Enhance Your Code ECDL Computing

Page 80 © 2017

9.1 READABLE CODE

 Concepts

Imagine you have just completed a program for a game you have invented. You
know exactly how the code works because you have just written it. You save your
work and move on to another project. Now imagine returning to the program after
a few months; how quickly would you be able to familiarise yourself with the code?
How easy would it be for someone else who has never seen it to figure it out?

In reality python programs can be quite large and contain many instructions. They
are often worked on by more than one programmer at different stages. It is
essential that a program’s code is ‘readable’ i.e. the reader can easily understand
what the program does and why.

The same general techniques for making code easier to understand apply to all
programming languages, they are:

• Use of comments

• Organisation of code

• Descriptive names

9.2 COMMENTS

 Concepts

A comment is a piece of text explaining what some part of the code does. It is a
short description of a piece of code that humans can read but the computer will
ignore, designed to help programmers understand what is happening within a
program. Appropriate comments are a characteristic of well-structured and
documented code. Comments on the code should help the author and other
people understand what each section of code is doing.

Comments start with a hash, #, and go on to the end of the line. They appear in
red in the Python editor.

The red text after the # to the end of the line is not considered by Python when it
is running the code. The text is just there for programmers use.

This is a comment

ECDL Computing Lesson 9 – Enhance Your Code

© 2017 «PageFooterText» Page 81

9.3 ORGANISATION OF CODE

 Concepts

Programmers make their code easier to follow by breaking it up into smaller
chunks, or blocks.

A block is defined as a group of adjacent lines that are indented the same
amount. Indentation is used to make program code easier to read and
understand. Many code editors perform the indentation automatically.

Blocks are usually named by using the word 'def' followed by the name, chosen to
describe what the code does. (This is explored further in lesson 12 Procedures
and Functions.)

The name (“def name”) is entered first, and then the start of the block is shown
with an indentation of the line. The lines of code in a block have the same
indentation, and are a sequence, so they are run one after the other.

By using carefully named blocks, a programmer can give a clearer structure to a
large Python program.

‘Unblocked’ code ‘Blocked’ organisation of code

Figure I

9.4 DESCRIPTIVE NAMES

 Concepts

Descriptive naming is a characteristic of well-structured and documented code. It
is the process of giving meaningful names to items and functions and procedures
in programming. There is an accepted structure which is common to all
languages. For example to write a small function called 'egg timer' in Python, it
should be written 'egg_timer'. This allows readers to see what the function is
intended to do.

Lesson 9 – Enhance Your Code ECDL Computing

Page 82 © 2017

Giving meaningful to variable names will also make more sense to the reader.
Variable names should be carefully selected so that they give a clue as to what
the variable is used for.

In our list example from lesson 8, the variable name pets could have been used
instead for a list of fruit:

pets=[‘pineapple’,’mango’,’kiwi fruit’]

Python would have no problem with that, and if instructed:

print(pets[1])
would print:

‘mango’

However, using such a misleading name creates confusion for a programmer
trying to read the code.

Example: Making Complex Code More Readable

1. Have a look at Python program shown below. It is a complex piece of code,
used here to illustrate some of the techniques discussed to enhance the
readability of code.

2. See if you can identify the following:

a) Comments to explain the program

b) Named blocks of code

ECDL Computing Lesson 9 – Enhance Your Code

© 2017 «PageFooterText» Page 83

3. Review the code you have created so far in ECDL Computing and see
where you might improve its readability by using the techniques from this
lesson.

Lesson 9 – Enhance Your Code ECDL Computing

Page 84 © 2017

9.5 REVIEW EXERCISE
1. A 'comment' in a computer program is:

a. Anything contained in quotes
b. Anything in the code that is before a procedure
c. The ASCII character '#'
d. Text to help document the program.

2. You should use a comment:

a. After every single line in a program.
b. Before every single line in a program.
c. To make it easier for someone else to understand your program.
d. Only for the most difficult function in a program.

3. Variable names should be:

a. Short to make the program as fast as possible.
b. At least eight letters long, so that other people won't be able to guess them.
c. Made from letters and numbers, not just letters.
d. Chosen to make your program more easily understood.

4. Python blocks of code are indicated by:

a. Surrounding them with quotes.
b. Starting them with '{' and ending them with '}'.
c. Starting them with '(' and ending them with ')'.
d. Indenting the block of code.

LESSON 10 –
CONDITIONAL STATEMENTS
Lesson 6 - Flow of Control

After completing this lesson, you should be able to:

• Define the programming construct term conditional statement. Outline the
purpose of conditional statements in a program

• Define the programming construct term logic test. Outline the purpose of a
logic test in a program

• Use Boolean logic expressions in a program

• Use IF…THEN...ELSE conditional statements in a program

Lesson 10 – Conditional Statements ECDL Computing

Page 86 © 2017

10.1 SEQUENCE AND STATEMENTS

 Concepts

In early computer languages each line of code of a program was one instruction
and was complete in itself. Each instruction was followed in order by the
computer, one after the other. This is called sequential programming.

In sequential programming instructions are executed, in order, one after
another.

In computer languages a statement is the smallest standalone unit of code that is
complete in itself.

An example of a statement is the print() statement:

print('Something to print')

When programmers use the term 'statement' they are referring to small
components of code like print().

10.2 IF STATEMENT

 Concepts

In a flowchart, a decision box can be considered a complete standalone unit. The
decision box has a True or False outcome that allows a choice to be made on
what the code executes next.

A Conditional Statement is used to evaluate an expression as True or False.
The outcome, a True or False value, determines what is done next.

In Python, conditional statements use a structured format and layout, and are
written with the keyword if followed by a boolean expression to evaluate the
condition, and then a colon.

For example:

Age = input ("How old are you?")

if (12 (Age) > 14) :

print ("You are younger than me")

The indented block of code on the next line (the print() command in this case) will
be obeyed if the expression is evaluated as true.

ECDL Computing Lesson 10 – Conditional Statements

© 2017 «PageFooterText» Page 87

The boolean expression (12 (Age) > 14) in the if statement is called a logic test.

A Logic test is an expression that gives a Yes or No, True or False answer. The
answer affects what code runs next.

This is the structured format to use:

If expression
 statement if true

In pseudocode the logic test may be expressed in natural language such as:

‘Do I have enough Money?’

The same logic test would be shown as text in a flowchart like this:

Example: A Logic Test

1. Open Python.

2. Create a new program file called NameLen.py Write the code as shown
below. Be sure to use a colon as shown at the end of the line that starts
with the keyword if.

3. Run the program.

4. Respond to the prompt by typing either a short or a long name (more or
fewer than 4 letters).

5. Observe the result.

Is balance>=Price?

Lesson 10 – Conditional Statements ECDL Computing

Page 88 © 2017

10.3 IF…ELSE STATEMENT

 Concepts

Python can allow for one block of indented code, a subroutine, to run if the logic
test is True, and different block of code to run if the logic test is False.

The code is written with the if statement as before, and a new keyword else,
followed by a colon, to add code that runs if the logic test is False.

This is the structure format to use:

if expression:
statement if true

 else:
 statement if false

For example:

Age = input ("How old are you?")

if (12 (Age) > 14) :

print ("You are younger than me")

else

print ("You are older than me")

The indented block of code on the next line (the print() command in this case) will
be obeyed if the expression is evaluated as true.

Note: The ‘else’ is not indented, it starts at the same indentation level as the 'if'
keyword. When you try to the keyword ‘else’, Python will initially indent the word,
so you will have to press the backspace key to get the correct level of indentation.

Example: An if..else Statement.

ECDL Computing Lesson 10 – Conditional Statements

© 2017 «PageFooterText» Page 89

1. Open the NameLen.py example.

2. Modify it so that it reads as shown.

3. When you reach the point of typing in the 'else' press the backspace key to
cancel one level of indentation.

4. Make sure there is a colon after the keyword else.

5. Run the code.

6. Type in a short name.

7. Run the code again.

8. Type in a longer name to see the code running for the case where the logic
test is false.

Lesson 10 – Conditional Statements ECDL Computing

Page 90 © 2017

10.4 REVIEW EXERCISE
1. A Python conditional statement:

a. Has the keyword ‘if’ in it
b. Has the keyword ‘def’ in it
c. Is a special kind of comment saying what conditions the code should be used

in.
d. Is a special kind of procedure that may in some conditions be a function

instead.

2. In the following code:

if password == ‘Voldemort’ :
print(‘I guessed your password correctly’)

else :
print(‘I did not guess your password correctly’)

…which of the following statements are correct?

a. Both the first and second indented block will always be run.
b. Neither the first nor the second indented block will ever be run
c. There is a logic error because you cannot use == with a string.
d. The first or second indented block may be run. Which one runs depends on

the value of password.

LESSON 11 –
PROCEDURES AND FUNCTIONS

After completing this lesson, you should be able to:

• Understand the term parameter. Outline the purpose of parameters in a

program

• Understand the term procedure. Outline the purpose of a procedure in a
program

• Write and name a procedure in a program

• Understand the term function. Outline the purpose of a function in a
program

• Write and name a function in a program

Lesson 11 – Procedures and Functions ECDL Computing

Page 92 © 2017

11.1 SUBROUTINES

 Concepts

One piece of code may be used more than once in different places in a program.
This is called a subroutine.

A subroutine is a block of code that can be called up and run many times in a
program. For example a subroutine could be used to display the date or time on
the computer screen.

In Python the keyword ‘def’, (short for 'define'), is used to give a name to a
subroutine. We can call or invoke a subroutine from anywhere in the entire
program by referencing its name. The subroutine will run and when it has finished,
the main program resumes from before the start of the subroutine.

A subroutine can perform a calculation, and return the answer or value to the
program. This is called returning a value.

There are two types of subroutine.

Function
A Function is a subroutine that calculates a value for the program that contains it.

Procedure
A Procedure is a subroutine that executes an action, but does not return a value.

11.2 FUNCTIONS AND PROCEDURES

 Concepts

Functions and procedures are made more flexible by having parameters.

A parameter is a special variable which is used in a subroutine to influence what
it does.

Example: Calling Built-in Functions and Procedures

Python comes with some subroutines, i.e. functions and procedures, already
defined.

input()and print()are both subroutines:

• input() is an example of a function. When called from within a program, it
performs an action, and returns a value back to the code that called it. The

ECDL Computing Lesson 11 – Procedures and Functions

© 2017 «PageFooterText» Page 93

program resumes from where the input() function was called from in the
program.

• print() is an example of a procedure. When called from within a program, it
performs an action and afterwards the program resumes from where the
print() procedure was called in.

Example: Creating a Function

This piece of code defines a function called ‘stars’ which has a parameter called
‘number_of_stars’ which determines the number of stars to return in a string.

There are three print statements in the program for us to check that the function is
working correctly.

1. Open Python.

2. Create a new file called Arrow.py.

3. Type in the first block of code from the screenshot below, with the def
statement and all the indented code lines to create a new function.

4. When you type in the three print statements, you call up the function three
times.

5. Run the program to see the result.

Note: The program runs in sequence from the first print statement.

 The first print statement prints one star on the first line.

 The second print statement prints two stars on the second line.

 The third print statement prints three stars on the third line.

The quantity of stars printed on each line is dependent on the value of the
parameter number_of_stars in each print statement.

Lesson 11 – Procedures and Functions ECDL Computing

Page 94 © 2017

Example: Creating Procedures

1. Open Python.

2. Create a new file called Lines.py.

3. Type in the two blocks of code from the screenshot below, with the two def
statements and all the indented code lines to create two procedures.

4. Then type in the print statement and next, the two lines to invoke the two
procedures in the main body of the program.

5. Save the program and run it to see the result.

How the program works:

• The program runs in sequence starting with the print statement

ECDL Computing Lesson 11 – Procedures and Functions

© 2017 «PageFooterText» Page 95

• The program calls the procedure line_vert which prints a vertical line of
stars on the screen. After executing this procedure, the program resumes
with the next instruction which calls another procedure called line_horz.

• Both procedures run but don’t return any values to the program.

Lesson 11 – Procedures and Functions ECDL Computing

Page 96 © 2017

11.3 REVIEW EXERCISE
1. A typical function in Python:

a. Starts with the keyword def and provides some code that returns a value
b. Starts with the keyword abc and provides some code that returns a value
c. Is a named piece of code that does a number of things and then stops the

program.
d. Is a named piece of code that does a number of things and then restarts the

Python shell.

2. A typical procedure in Python:

a. Consists of pseudocode which isn’t meant for the computer to run.
b. Consists entirely of comments specifying what the program is intended to do.
c. Starts with a #
d. Is like a function, but does not return a value.

3. A parameter is:

a. A value which is passed in to a procedure or function for it to use
b. A way of measuring distance approximately, that can makes some code

simpler.
c. A way for a program to do several things at the same time.
d. A block of code with a specified number of lines to it.

LESSON 12 –
LOOPS

After completing this lesson, you should be able to:

• Define the programming construct term loop. Outline the purpose and
benefit of looping in a program

• Recognise types of loops used for iteration: for, while, repeat

• Understand the term infinite loop

• Use iteration (looping) in a program like: for, while, repeat

Lesson 12 – Loops ECDL Computing

Page 98 © 2017

12.1 LOOPING

 Concepts

Up to this point we have created programs that work sequentially, i.e. statements
are executed in the order they are written, like following a recipe step by step. If
we need to carry out the same step several times, we can use what’s known as a
loop in computing.

A loop is a piece of code that is run repeatedly under certain conditions.

A loop is represented in flowcharts where an arrow from a decision box goes back
to an earlier box in the sequence. Examine the flowchart for baking the cake
below. Checking the cake to see if it is baked is a step that could be repeated
several times before the cake is ready to be taken out of the oven. This
repeatable step is represented by a loop – check cake, if not baked, wait 5
minutes then check again.

A loop in a flowchart

Using a loop to repeat an action is one of the most useful techniques in coding.
Looping code is present in most programming languages with slight variations on
naming conventions e.g. ‘repeat’ is used to determine how many times to loop in
some languages; we’ll see later in this lesson that ‘while’ does the same thing in
Python.

Python uses the ‘for’ statement to make loops.

Put cake in oven

Check whether
cake is baked

Cake is baked?

Wait 5 minutes

Take cake out of oven

Yes

No

ECDL Computing Lesson 12 – Loops

© 2017 «PageFooterText» Page 99

The for statement has several parts to it.

for i in range(10):

 statement

• The keyword 'for' is followed by the name of a variable, in this case i,
keeping count of the repeats of the loop. The variable i will have an initial
value 0, and after each time the loop is run, it increments to 1 then 2, and
so on up to 9.

• The words 'in range()' with a number inside the parentheses followed by a
colon, indicating how many times the loop will run

• An indented line of code with a statement will be executed 10 times.

Example: Attempting to Print a Row of Ten Stars

This example shows an attempt to print a row of ten stars.

1. Open Python.

2. Type in the following code.

3. Press Enter to run the code.

Lesson 12 – Loops ECDL Computing

Page 100 © 2017

12.2 LOOPING WITH VARIABLES

 Concepts

In the previous example each star was displayed on a line of its own. We wanted
a row of stars.

One different approach would be:

print('***********')

This will work but it is not efficient – what if you wanted to print 599 stars?

This is where loops save a lot of programming time and lead to shorter code. We
can write a loop to print 10 stars, 42 stars or 599 stars, depending on a value.

How the program works:

• Print a row of 10 stars by using a loop is to build up the row of stars in a
variable. Then, once the row is ready, the code can print it. This approach
will use the + operator to add the string '*' onto a variable called answer.

answer = answer + '*'

This line of code uses the current value of answer, adds a star onto the end, and
puts the result back into answer.

• The variable named answer must first be initialised before it is used. To
initialise it to a string with three stars use:

answer = '***'

To initialise answer to a string that is empty, remove the three stars from the line
above. Keep the two quotation marks! Without them it's an error. The two
quotation marks at the start and end tell Python that answer is a string.

Example: Row of Stars using a Variable

1. Open Python.

2. Initialise the variable called answer to be an empty string.

3. Use a loop to add 10 stars onto the string.

4. Print the string.

ECDL Computing Lesson 12 – Loops

© 2017 «PageFooterText» Page 101

There is a shorthand way of writing answer=answer+'*' which uses a new
operator +=.

5. Write the same code using the += operator, as shown below:

12.3 VARIATIONS ON LOOPS

 Concepts

We have seen that loops have a particular structure and layout in Python.

for i in range(10):

 statement

The indented code block after the ‘for’ line is said to be 'inside the loop'.

• Code before the loop is executed and then the loop is executed.
• Code inside the loop is executed multiple times.
• Code immediately after the loop is executed only after the loop has finished

repeating the code in the indented block.

So far we have looked at the basic loop but there are other variations of loops that
we can use as well.

Another kind of loop uses a logic test rather than range(). It's called a while loop.

A while loop tests a boolean expression and repeats execution of the loop as
long as (ie While) the boolean expression is true.

Lesson 12 – Loops ECDL Computing

Page 102 © 2017

How the program works:

• The example that follows will initialise a variable x to 3000, and keep
dividing by 2 while x is greater than 0.5.

• Then it will stop.

Example: A While Loop

1. Open Python.

2. Create a new program file called While.py.

3. Type in the code as shown below:

4. Run the program.

In a while loop, if the logic test is always true, the loop will repeat forever. It then
becomes an infinite loop.

An infinite loop never stops. It uses the key words "while true", followed by a
colon.

As we usually want a program to stop at some point, infinite loops usually indicate
an error.

ECDL Computing Lesson 12 – Loops

© 2017 «PageFooterText» Page 103

Example: An Infinite Loop

1. Open the program While.py.

2. Modify the logic test so that the line reads While True:

3. Run the program.

4. You can stop the program by opening the menu and clicking on Shell,
Restart Shell.

12.4 PUTTING IT ALL TOGETHER

 Concepts

Example: Drawing an Arrowhead

Python can be used to write a program that draws an arrowhead like the one
shown below:

Lesson 12 – Loops ECDL Computing

Page 104 © 2017

This task could be done with lots of print() statements. However, it can be done
with fewer instructions by using loops, functions and procedures.

To draw the arrow, each row of stars needs to be horizontally centered, rather
than aligned to the left. There is a function to do that. It’s called center(). If the
variable named answer holds a string of stars, the following line of code adds
spaces before and after the stars to make 30 characters in all.

 answer=answer.center(30)

1. Open the Arrow.py Example from your previous lesson.

2. Modify the code as follows so that it will centre the stars.

3. Run the code to get the following result.

ECDL Computing Lesson 12 – Loops

© 2017 «PageFooterText» Page 105

4. To get a more arrow-like shape the first row should have one star, the
second three stars and the third row five stars. Change the parameter
value in each print statement, as follows, to fix that:

5. Run the code to get the following result:

We can create and expression and write a subroutine to create the arrow head
and reduce the amount of code needed. We need 10 rows of stars to make the
arrowhead.

Consider the expression:

 i*2+1

When i=0 the value of the expression is 1

When i=1 the value of the expression is 3

When i=2 the value of the expression is 5

When i=3 the value of the expression is 7

When i=4 the value of the expression is 9

When i=5 the value of the expression is 11

When i=6 the value of the expression is 13

When i=7 the value of the expression is 15

When i=8 the value of the expression is 17

When i=9 the value of the expression is 19

Lesson 12 – Loops ECDL Computing

Page 106 © 2017

1. Give the new subroutine the name arrow_head().

2. Invoke arrow_head() as the last line of the program.

Note: The arrow_head() subroutine is a procedure, because it does not return a
value.

The stars() subroutine is a function, because it returns a value.

1. Take a moment to review how the program works before running the code:

• The program begins by executing the procedure arrow_head().

• The variable i will have ten values from (0-9) and so the arrow_head()
procedure will run ten times, each time calling the function stars(). This
is an example of one subroutine calling another.

• The function stars() contains a variable called answer this variable will
hold a string of stars for each print statement.

• Subroutines calling other subroutines is one of the most important ways
that large programs are broken up into smaller pieces, each piece doing
some small well defined part of the overall task.

2. Run Arrow.py to see the arrow head that the code draws.

ECDL Computing Lesson 12 – Loops

© 2017 «PageFooterText» Page 107

12.5 REVIEW EXERCISE
1. What is the main purpose of a loop?

a. To stop the computer running off the end of a program.
b. To go back to the beginning of a program.
c. To connect one computer to another.
d. To do some instructions repeatedly.

2. A loop that goes on forever is called?

a. A pixel loop.
b. A broken loop.
c. An infinite loop.
d. An ‘iffy-loop’.

3. To count through several items, we typically use:

a. a loop the loop
b. random numbers
c. a while loop
d. a for loop

4. To repeat some action several times without counting we typically use:

a. a loop the loop
b. random numbers
c. a while loop
d. a for loop

LESSON 13 –
LIBRARIES
Lesson 7 - Libraries

After completing this lesson, you should be able to:

• Understand the term event. Outline the purpose of an event in a program

• Use event handlers like: mouse click, keyboard input, button click, timer

• Use available generic libraries like: math, random, time

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 109

13.1 USING LIBRARIES

 Concepts

Functions and procedures provide a way of reusing code. Two ways of reusing
code on a larger scale are:

Libraries

A library is a collection of already written procedures and functions that can be
reused from a program. A Library saves the work of writing procedures and
functions from scratch.

• The source code of library functions is not visible in the program.
• A library is added by giving the name of the library in an ‘import’ command.

near the start of a Python program.

ECDL Computing learning materials uses these libraries:

Random, Math and Time
Standard libraries that come with Python and that provide functions for working
with numbers

pygame
An optional library for working with graphics and animation.

Boilerplate code

Is code that is used with little or no modification in a project, for example
boilerplate code may provide functions to show images on multiple pages of a
document and this code is included as it will be called many times in a program.

• Boilerplate code is source code that is visible in the program.
• Boilerplate code is used by including all its source code in the program

being worked on.

When using boilerplate code or a library it is not necessary to know the details of
how the algorithms in boilerplate code or library work.

The learning materials include boilerplate code to initialise and use the libraries.

Lesson 13 – Libraries ECDL Computing

Page 110 © 2017

13.2 STANDARD LIBRARIES

 Concepts

The Import Statement

Python uses the import statement to make code in libraries available to use.

There are two versions of the import statement:

The first version uses the keyword import followed by the name of the library.

When using this version of import, functions from the library have the name of the
library first, then a dot and then the function name. An example is shown below:

Example of import statement without naming functions

Running this example will give a random fruit name, for example, as shown below:

An alternative version of the import statement names each function to import. It
uses the keyword from, then the name of the library, then the keyword import
then the names of functions to import with a comma between them.

When using this version of import, functions from the library do not need to have
the library name before them. An example is shown below:

Example of import statement with named functions

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 111

Three Standard Libraries
Three standard libraries that come with Python are:

LIBRARY PURPOSE

time Functions related to time, such as for printing
today's date, time, or day of the week.

random A library for generating random numbers

math A library with mathematical functions,

time Library

There are two particularly useful functions in the time library. They are usually
used together:

FUNCTION PURPOSE

strftime A function that takes a 'time object' and converts it
to a string. This is called formatting. There are
many options for exactly how this function formats
the time.

gmtime A function that gives a 'time object' for the current
time of day.

The strftime function uses 'format specifiers' to describe exactly how it wants the
string result to look. For example, the letters '%Y' are replaced by the year, so the
string 'In the year %Y' could be changed to the string 'In the year 2001' by strftime.

Here is a table of the format specifiers for strftime:

FORMAT MEANING EXAMPLE

%a Day of week (short) Mon

%A Day of week (full) Monday

%b Month name (short) Sep

%B Month name (long) September

%c Date and Time 15/09/76 17:22:56

%d Day of month 15

%H Hour (24 hour clock) 17

Lesson 13 – Libraries ECDL Computing

Page 112 © 2017

%I Hour (12 hour clock) 5

%j Day of the year 350

%m Month as a number 9

%M Minute as a number 22

%p Either AM or PM PM

%S Seconds as a number 56

%u, %w
or %W

Week number 15

%x Date 15/09/76

%X Time 17:22:56

%y Year (two digits) 76

%Y Year (four digits) 1976

%Z Time Zone GMT Standard Time

Example: A timestamp

In this example strftime is used to print a timestamp. This example uses many of
the format options from the table above.

1. Create a new program called Timestamp.py.

2. Write the code as shown below.

3. Run the program to get the following result. The time and date will be the
current time and date, rather than the time and date shown here.

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 113

random Library

Two useful functions in the random library are choice and randint.

FUNCTION PURPOSE

choice A function that picks one random item from a list

randint A function that picks a random integer between two
integers. randint(1,6), for example, gives a random
number between 1 and 6, like the roll of a dice.

Example: Rolling a dice

In this example, randint is used to roll a dice 10 times.

1. Create a new program called RollDice.py.

2. Write the code as shown below.

3. Run the program.

math Library

Some of the functions in the math library are:

Lesson 13 – Libraries ECDL Computing

Page 114 © 2017

FUNCTION PURPOSE

log10 Logarithm base 10. log10(100000) is 5. It counts
the number of zeroes in that case.

pow Raise to the power. pow(10,3) multiplies 10 by
itself three times, so gives 1000 as the result.

sqrt Square root. sqrt(16) is 4. sqrt(25) is 5.

sin Sine of an angle measured in radians.

cos Cosine of an angle measured in radians.

tan Tangent of an angle measured in rafdians.

factorial Factorial of a number. factorial(5) is 5 * 4 * 3 * 2 *
1 which is 120

In addition the math library has the value for the mathematical constant pi.

Example: Using the math Library

1. Create a new program called MathExample.py.

2. Write the code as shown below.

3. Run the program

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 115

13.3 EVENTS

 Concepts

The flow of a program can depend on certain actions happening. Users can
trigger these actions by, for example, using the mouse to click on a graphic they
see on screen, pressing a key on the keyboard or clicking a link in a browser
window. In Python programming these actions are called events.

Events are used extensively in games. Events that determine the movement of
game’s character are triggered by user input, for example: using the arrow keys to
move the character in a particular direction, using a mouse click to make the
character jump etc.

Some events may be specific to hardware. In an alarm system which uses a
computer to monitor for intruders, a person moving near a sensor or pressure on a
pressure mat could cause or trigger an event.

In some computers, the battery being low would trigger an event. This may cause
a message to display to suggest recharging the battery.

Event Handlers

An Event handler is a piece of code designed to do something once an event has
been triggered. For example the up, down, left, right arrows on a keyboard can
control the movement of a player in a game. Depending on which event occurs
(Up, down, left, right), the program will execute the appropriate 'event handler'
code which will carry out the correct movement of the player.

Some computer languages have a system of 'registering' functions that are called
when certain events occur. We can recognise these functions by their names
which begin with the word 'On' followed by the name of the event. For example
'OnClick' is called when a user generates an event by clicking anywhere on the
screen.

Example: Exploring Event Handlers

Python has a library called turtle. It is a simple drawing package included in the
Python installation. To use this library we must use the import command at the
start of our program.

Lesson 13 – Libraries ECDL Computing

Page 116 © 2017

How the program works:

The comments in the program explain what each of the ten subroutines do. The
program continuously loops, checking on each pass to see if an event has
happened. When an event is triggered, the program calls the subroutine assigned
to that event. When it finishes it returns to the main body of the program.

• The first four onkey event handlers are used to determine if any arrow keys
have been pressed on your keyboard. Subroutines h1-h4 are invoked once
a keypress is detected. These are keyboard events.

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 117

• The next four onkey event handlers are used to detect if either p,d,b or w
keys are pressed on the keyboard, again calling the associated subroutines
h5-h8. These are keyboard events.

• The next event handler is used to detect a mouse click and triggers and
event if detected and then runs the h9 subroutine. This is a click event.

• The last event handler is used to trigger and event when a timer times out.
Once the time has elapsed, the subroutine h10 is run.

Note: the “screenr.listen” command is used to check for any events.

• Type in the code in the screenshot above, without the comments.

• Save the program as Turtle_drawing.py.

• Run the program.

• Note how the pointer changes from black to red after 5 seconds. This is the
timer event triggering in the program.

• Note how when you press the arrow keys on the keyboard the pointer
moves and draws lines. These are keyboard events being triggered for
each arrow press.

• Press p on the keyboard turns the pen off, another keyboard event.

• Press d on the keyboard turns the pen on, another keyboard event.

• Pressing b or w on the keyboard changes the pen ink colour. These are
keyboard events.

• Finally click your mouse anywhere on the screen. The mouse pointer turns
180 degrees. You have just triggered a click event in the program.

13.4 PYGAME LIBRARY

 Concepts

In Python, and with Pygame, code for handling events is written to repeatedly
request information to check whether any event has happened. The following
screenshots are from the moving grass example later in this lesson. For now, let’s
take a first look at two common events.

Lesson 13 – Libraries ECDL Computing

Page 118 © 2017

Event handling highlighted in BoilerPlate.py

In the check_for_quit() function, a for loop repeatedly checks to see if the Quit
event has occurred in Pygame. The QUIT event is triggered when the user clicks
on the X in the top right of the Pygame window. If that event is detected, the
check_for_quit() function returns True. If it is not detected, check_for_quit()
returns False.

The second piece of highlighted code, the call to clock.tick() function is related to
event handling too; it sets how frequently the while loop runs which in turn
determines how often the screen is updated.

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 119

Event handling highlighted in Grass.py

Another event example highlighted above, is in the draw_grass() procedure. The
mouse.get_pos() is called to get the position of the mouse which is used in
positioning the moving blades of grass.

13.5 BOILERPLATE CODE

 Concepts

To use the Pygame library, a program needs to add the library, initialise it, define
colours and do several other actions. Boilerplate code is provided with these
learning materials to perform these actions.

We don’t need to know how boilerplate code works in detail. We need to know:

• That tuples are used to define some colours used in painting the screen.
• That the boilerplate code imports from the random library to get the function

randint.
• That it has an event loop, and what events are.
• That it uses randint to generates a random integer.

Example: Exploring BoilerPlate.py

1. Locate and open BoilerPlate.py supplied with these learning materials. (you
don't need to type boilerplate.py code in yourself).

Lesson 13 – Libraries ECDL Computing

Page 120 © 2017

2. Look at the lines after the comment # Import the ‘pygame’ library. The three

lines with ‘import’ are all about using libraries:

• ‘import pygame’ allows us access to the pygame library so that it is
available to use.

• ‘import pygame.gfxdraw’ allows us access to an optional extension to
pygame that draws shapes more smoothly.

• The ‘random’ library provides random numbers. The import command
allows us access one function, randint, that generates random integers.

The remaining code:

• Initialises the Pygame library. That library has many variables inside it
that need to have their initial values.

• It defines and initialises two colours, GREY and GREEN. The round
parentheses indicate that these colours are defined as tuples with three
integer values.

• It creates a variable called screen that is a window 400 pixels wide and
300 pixels high.

3. Scroll down - the boilerplate code defines some procedures for plotting
points and blobs. Read the comments describing each subroutine

The subroutines are explained below in a bit more detail than they are in
the comments. This section of code provides utility functions and
procedures.

• plot_point will plot a green dot on the screen. It uses the numbers 400
and 300, which are the width and height of the screen, to scale the point
to the right position on the screen.

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 121

• draw_blob will draw a green circular blob on the screen. It also prints
the coordinates of the blob.

• apply_transform applies an ‘affine transformation’ to a point. This is
used to distort shapes. It can make a shape bigger/smaller, rotate it,
reflect it, shift it left or right, up or down. For this course we only need to
know that the affine transform takes some coordinate and returns a
different one as a result.

The screenshot that follows was given as an example of comments and
code structure in an earlier section.

4. Scroll down - the next part of the boilerplate code is concerned with events.

Read the comments on the event processing code.

Notice that check_for_quit() is a function. It returns a boolean value.

Notice that do_eventloop() is a procedure. It does have the return keyword
in it, but that return does not return a value.

The event processing code is:

• check_for_quit() checks an event. It asks Pygame if the user has
clicked on the ‘X’ in the top right hand corner of the graphics window. If
they have, it’s time to quit that window.

Lesson 13 – Libraries ECDL Computing

Page 122 © 2017

• do_eventloop() has an infinite loop, the ‘while True’, that keeps
checking for quit and redrawing the graphics screen. The repeated
drawing of the graphics screen is relevant for animation.

do_eventloop() uses an unusual technique. The parameter that is passed
in to do_eventloop() can be a function. If it actually is a function, then
do_eventloop will call that function each time it draws the graphic screen.

5. Scroll down

The remaining code gives two ways to draw the screen.

Read the comments for the procedures.

These two procedures give two choices for ways to use the event loop.

• draw_once() will run our drawing code once, then wait for the user to
quit the graphics screen.

• draw_repeatedly() will run our drawing code over and over, checking
each time to see if the user has quit. This procedure is suitable for
animation.

The draw_once() function has a sequence of actions. These include
printing out ‘Starting’ and ‘Finished’ and waiting for quit in the event loop.

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 123

Example: Make a Copy of the BoilerPlate.py

To use Pygame, make a copy of the boilerplate code, and then add your code to
it.

1. Open the BoilerPlate.py file.

2. Use steps from the example 'To Create and Save a Program'. Use from
the SaveAs step onwards to save BoilerPlate.py with a new name you
choose.

3. Check that you have made a copy by opening the new copy of the file.

13.6 DRAWING USING THE LIBRARIES

 Concepts

For professional 3D games, graphic artists create custom art for many of the
features of the worlds and monsters in the game. However, a lot of detail can be
generated from code. For example, artists do not draw every blade of grass and
animate each blade moving in the breeze. Instead they create one or a few
different blades of grass and then use procedures and loops to draw and animate
many blades of grass moving.

Lesson 13 – Libraries ECDL Computing

Page 124 © 2017

Pygame has a 2D graphics library. Pygame code can use a loop and random
numbers to show the principle of getting the computer to do the repetitive work.
Code can draw and animate one blade of grass and that code can then be put
into a loop to draw and animate many blades of grass.

In the following Pygame example the ‘blades of grass’ are just green lines.

Example: Blades of Grass

1. Make a copy of the boilerplate.py code,

2. Call the copy Grass.py

3. Add the following code on the end:

4. Review the following points about this code. Check how these points relate
to the actual code.

draw_grass() has a loop and calls draw_blade() 30 times.

draw_blade() in turn calls draw_line() in the pygame library, and draws a
GREEN line of width 3.

Changing GREEN to be the tuple (0,0,255) would give blue grass instead.

• draw_blade() has three parameters, i, s and t, but at this stage only one
of the parameters, i, is used. Subroutines do not have to use all the
parameters that are passed to them.

• i is the number of the blade of grass. i sets the position of the blades of
grass, x.

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 125

• The ‘x = i * 10 + 50’ derives x from i. The formula takes the blade of
grass number, which could be 0, 1, 2, 3... and changes it to an x
coordinate, 50, 60, 70, 80... The *10 makes the blades of grass 10
pixels apart, and the +50 starts the sequence at x=50. Change these
values slightly and run the program to see different spacing and start
position.

• draw_grass() invokes the function mouse.get_pos().

• mouse.get_pos() gets the position of the mouse as a tuple. The tuple
contains the x and y position of the mouse. The code divides x by 200
and y by 300 to get the values of the parameters s and t for
draw_blade.

5. Run the program to see the blades of grass:

The picture of grass currently has straight lines for the grass. To make the
blades of grass taper, replace the code that says draw_line().

6. Make the following changes to the code:

Lesson 13 – Libraries ECDL Computing

Page 126 © 2017

7. Relate the description below to the changes in the code.

The biggest change here is creating a new variable, shape.

• The new list variable ‘shape’ holds coordinates for four corners of that
blade of grass.

• draw.line has been got rid of. The two gfxdraw commands draw the
outline of the shape and then the inside, respectively. Change the
outline to a different colour to GREEN to show this.

8. Run the code to see blades of grass that taper.

9. The next step makes two more changes to what the program does:

• Makes the grass spread out

• Makes the grass sway

There is only one significant code change involved. It affects the variable
dx. dx moves the tips of the grass left or right. 0 means no displacement
left or right. A negative dx moves the tip left. Positive moves right. The
change in the code changes the instruction dx = 0 to have a calculation for
dx.

10. Change the code as follows:

ECDL Computing Lesson 13 – Libraries

© 2017 «PageFooterText» Page 127

11. Relate the description below to the changes in the code.

• dx moves the tips of the grass left or right.

• randint(-10, 10) is a function from the random library that generates a
random integer between -10 and +10. This is then divided by 10 to get
a floating-point number between -1 and +1. So, the randint() is moving
the tips of the grass one pixel randomly left or right.

• The 2*t*(i-15) isn’t random. It makes the tips of the grass spread out. If
this part of the expression is left out from the code the tips will just move
randomly, but they won’t spread out.

12. Run the program to get the following picture:

The printed picture doesn’t show that the grass is now moving, but does
show how it has spread out.

Lesson 13 – Libraries ECDL Computing

Page 128 © 2017

13.7 REVIEW EXERCISE
1. An event is:

a. When a program is running and moves from code written by the programmer
into library code.

b. Something that happens that a program should react to.
c. When a program has too much data and needs to get rid of some of the data.
d. A special Python data type used to track important dates, for example in

calendar apps.

2. The function 'randint' is found in which library?

a. The math library.
b. The randint library.
c. The monster library.
d. The random library.

3. The string named greeting has the value ‘Good’. Which command sets it to have the

value ‘Good Morning’?

a. greeting = ‘Good’ + greeting
b. greeting = greeting + “ Morning”
c. greeting = ‘Good’ + ‘Morning’
d. greeting = [‘Good’, ‘Morning’]

4. The tuple named colour has the value (0,0,255). Which command sets it to have the

value (255,0,255)?

a. colour[0] = 255
b. colour[1] = 255
c. colour = (255 , 0+0 , 255)
d. colour = 255,0,255

5. Which of the following does not generate events in Python with Pygame?

a. Clicking on the mouse.
b. A timer.
c. Input from keyboard.
d. Battery low.

LESSON 14 –
RECURSION
Lesson 8 -

After completing this lesson, you should be able to:
• Understand the term recursion

This lesson also reinforces concepts from earlier lessons such
as:

• Loop

• Procedure

• Function

• Variable

• Parameter

Lesson 14 – Recursion ECDL Computing

Page 130 © 2017

14.1 RECURSION

 Concepts

The waving grass example from lesson 13 and the arrow example from lesson 11
involved subroutines calling other subroutines. This is one of the ways we
decompose a problem in computing. Remember decomposition is about breaking
a problem down into smaller problems. Subroutines are written to solve these
smaller problems. Subroutines are then called to execute until the whole problem
is solved.

It is also possible for a subroutine to call itself one or many times. Provided there
is some safeguard against a subroutine calling itself forever, subroutines that call
themselves can be a powerful technique for decomposing certain problems.

A subroutine that calls itself is known as Recursion.

Recursion is the process of a subroutine dividing a problem into simpler parts
and calling itself to solve those simpler parts. A recursive function has a call to
itself within the function.

When a recursive function invokes itself it is said to recurse.

The technique of recursion is most useful when a problem can be decomposed
into two smaller problems that are still in many ways like the original problem.

Example: Searching

One example of solving a problem using recursion is when searching. A
subroutine for searching could split the possibilities being searched into two
areas. The subroutine could invoke itself to search each of the areas, and split
those, and so on.

Imagine searching a house. The algorithm would split the problem into searching
the rooms and then split searching the rooms into searching different areas in the
room. Eventually the area being searched becomes small enough that it can be
checked in one step. There is then no need to subdivide any further.

Example: Drawing a Curved Line

Another example of a problem that can be solved with recursion is that of drawing
a curved line:

An algorithm chooses a point half way along the line. That splits the curved line
into a left part and a right part.

ECDL Computing Lesson 14 – Recursion

© 2017 «PageFooterText» Page 131

Splitting the curve has decomposed the original problem into two smaller
problems. One problem is drawing the left half of the curved line, the other
problem is drawing the right half.

That might not seem like much of an improvement in efficiency, but it can be, if we
further split each half of the curved line into two smaller problems, and so on.

By repeatedly subdividing the problem, the part of the curved line to draw
eventually becomes small enough that it fits in just one dot, one pixel on the
screen.

How the program works:

• A recursive subroutine to draw a curved line can call itself to draw the left
and the right halves.

• It can have a logic test that detects when the problem is a pixel or smaller
in size.

• When the problem has been reduced that far, the subroutine can draw that
dot rather than doing more subdividing.

• The combined result of all the dots form the curved line.

Left half problem

Right half problem

Lesson 14 – Recursion ECDL Computing

Page 132 © 2017

14.2 RECURSIVE DRAWING

 Concepts

The curved line drawing algorithm recurses once to draw the left part, once to
draw the right part. Recursion does not always have to split a problem into two, it
can split a problem into many parts. The upcoming example to draw a fern leaf
splits the problem into four at each stage.

Let’s first take a quick look at a fractal before we continue.

A fractal is a shape that is similar to itself at different scales. If you zoom in to a
fractal, you can find patterns that are similar to the patterns of the whole shape.

Some examples of how a fractal develops are shown below:

Fractals

The next example uses recursion to draw a fractal that is a fern leaf.

ECDL Computing Lesson 14 – Recursion

© 2017 «PageFooterText» Page 133

How the program works:

• The fractal drawing algorithm in the example below recurses to draw four
different parts.

• The four different choices make smaller distorted versions of the whole
pattern in four different places. In turn four smaller distorted versions are
made in each of those places.

• The details of the four distortions are held as numbers in list variables
called f1, f2, f3, and f4.

• Often recursive code has a parameter that sets how far to recurse. In this
fractal example this parameter is called 'level'. Each time the function
recurses it decreases the value of level. When level reaches zero the
algorithm plots a dot, and stops subdividing the problem further.

Example: Recursion for Fractal Fern

1. Make a copy of the boilerplate code

2. Call it Fern.py

3. Add the following code:

Lesson 14 – Recursion ECDL Computing

Page 134 © 2017

4. Run the program to get the result.

5. Check that the run has finished.

ECDL Computing Lesson 14 – Recursion

© 2017 «PageFooterText» Page 135

Example: Modifying Recursion Code for Fractal Fern

We can modify the shape of the fern by changing some parameters in the
recursion code.

If you reduce the 9 in draw_fern(9, (0,0)) to 3 the program will plot far fewer
points.

Increasing the ‘9’ even a little bit, will make the program take a lot longer to run.

If you change the 9 to 30 the program will take over a million years to complete
running.

Tip: To stop the program before it finishes, use the same technique as for the
infinite loop. Go to the shell window and on the menus click ‘Shell’, and then
‘Restart Shell’.

Lesson 14 – Recursion ECDL Computing

Page 136 © 2017

14.3 REVIEW EXERCISE
1. A recursive algorithm is one that:

a. Draws a picture of a fern.
b. Draws a curved line.
c. Uses random numbers to solve a problem.
d. Breaks a problem into smaller pieces, and then applies the same approach to

those smaller pieces.

2. A function that calls itself:
a. Is an incorrect sequence error in Python.
b. Could be an example of recursion.
c. Will always cause an infinite loop.
d. Is called a distortion.

3. An infinite loop is:

a. An example of recursion.
b. An example of distortion.
c. A loop that runs forever.
d. A recursive function that draws circles.

LESSON 15 –
TESTING AND MODIFICATION

After completing this lesson, you should be able to:

• Understand types of errors in a program like: syntax, logic

• Understand the benefits of testing and debugging a program to resolve
errors

• Identify and fix a syntax error in a program like: incorrect spelling, missing
punctuation

• Identify and fix a logic error in a program like: incorrect Boolean
expression, incorrect data type

• Check your program against the requirements of the initial description

• Identify enhancements, improvements to the program that may meet
additional, related needs

• Describe the completed program, communicating purpose and value

Lesson 15 – Testing and Modification ECDL Computing

Page 138 © 2017

15.1 TYPES OF ERRORS

 Concepts

A flowchart or a program may have errors. Errors which make the algorithm or
program work incorrectly are called bugs. For example:

• If one of the decision boxes in a flowchart was labelled incorrectly, with the
‘Yes’ and ‘No’ in the wrong places, the algorithm would have an incorrect
output. We call this type of error a bug.

• If in the magic trick program we divided by 15 rather than 13, we wouldn’t
get the intended answer at the output. The step dividing by 15 would be
called a bug in the program.

Serious bugs cause programs to stop working, or crash.

A crash is when the program stops working completely. Users can lose their data
as the result of a crash.

Three types of error commonly occur when programming:

A syntax error occurs when a construct in the programming language is
incorrectly written. It is an error in the code due to incorrect use of the language
such as spelling errors, incorrect punctuation, incorrect naming and referencing.
For example, (A+3 is a syntax error because it is missing a closing bracket.

A logic error occurs when the program instruction is for an incorrect action. The
program appears to be syntactically correct, (i.e. written correctly) but the logic is
flawed so when it runs it doesn’t do what was expected. In other words, a program
may operate correctly but may not do what is required.
For example:

if test_tube_is_full :

pour_more_acid_into_it().

A datatype error or typeerror occurs when you attempt to use an operator or a
function on something of the wrong type. For example, if we try to multiply a string
and an interger 3*apples together.

ECDL Computing Lesson 15 – Testing and Modification

© 2017 Page 139

15.2 FINDING ERRORS

 Concepts

Syntax Errors

Syntax errors also known as parsing errors are detected immediately by Python
when you attempt to run a program. Syntax errors aren’t thought of as bugs,
since Python will prevent the program from running when it finds a syntax error.

Examples of syntax errors include incorrect syntax, omission of a required colon
or bracket, misspelling a keyword, incorrect format for numbers etc. The parser
highlights the earliest point in the line where an error is detected

There is a colon at the end of the line which is incorrect. Simply correct this error
by removing the colon and re-run the program.

Lesson 15 – Testing and Modification ECDL Computing

Page 140 © 2017

Logic Errors

Logic errors are not always easy to find. Consider the logic in this program to
display an instruction to put a cake in an oven when the oven reaches the correct
temperature.

The logic is wrong . To correct we need to change the != (Not equal) symbol to
the == (Equals) symbol.

ECDL Computing Lesson 15 – Testing and Modification

© 2017 Page 141

Consider the example below and see if you can correct the logic:

There is a problem with the logic test in this program.

The logic test will work correctly for age inputs 14, 15, 16, 17 and 18 as the
program will correctly print “He’s a teenager” for each input.

But for Age inputs 13 and 19 it will print “He’s not a teenager”

To fix the program:

1. Open Python.

2. Type the code above correctly to fix the bug, by changing the line of code
beginning with ‘if’.

3. Check your solution by running your edited program.

4. Test values for age such as 12, 13, 14, 18, 19 and 20 to see if you get the
expected output.

Lesson 15 – Testing and Modification ECDL Computing

Page 142 © 2017

Example: Find and Fix logic and syntax errors

The following program has two syntax errors and one logic error.

1. Type in the program as shown below.

2. Fix the syntax errors.

3. Fix the logic error too.

4. Run the program to check your work.

Example: Find and Fix datatype error

Here we cannot join different datatypes together. We cannot join strings to
number variables. However, we can convert a number variable to a string. Below,
by using the str() function we convert the number variable students into a string.

ECDL Computing Lesson 15 – Testing and Modification

© 2017 Page 143

15.3 TESTING AND DEBUGGING A PROGRAM

 Concepts

Checking for Errors

A programmer might notice that their program has a logic error, or they might not.
It is important to detect logic errors. One way to do this systematically is by
testing.

Testing
Running a computer program using different inputs to find if there are logic errors.

In testing, the tester needs to know what the results should be. They may refer to
the requirements in a specification to check that the program is doing what it is
supposed to.

After fixing a bug the program will be tested again to make sure the bug really has
been fixed.

Testing Against Requirements

Best practice is to test a program against a specification document written at the
design stage. The specification gives clarity about what the program should do. It
lists requirements for the program.

A specification for a program will usually number the requirements. This is a
possible example:

1.3.1: The program SHALL dim the screen if the computer has not been used for
one minute.

Lesson 15 – Testing and Modification ECDL Computing

Page 144 © 2017

A corresponding plan for testing would include a step for testing that requirement.
The plan would stipulate leaving the program running for one minute and
confirming that the screen does go dim after that time. Each requirement should
have some corresponding tests.

In this example, if after one minute the program crashes, there is a bug in the
program. However, if nothing special happens after a minute, one could argue
that there is no bug.

This shows how systematic testing against requirements is valuable. Testing
would have identified a requirement that had not been implemented. Testing
against requirements also helps in finding problems that only show when certain
parts of the program are used. Testing in this way may find problems that would
not otherwise have been found.

Finding Bugs

When a program gives the wrong or unexpected results, or if the program crashes
unexpectedly with an error, it is not always obvious why that has happened.

When a program gives the wrong answer, it may not always be enough to just
look at the code to find the bug.

One way to find out more about the bug is to include some extra diagnostics in the
code. These could be additional print statements in the program to display the
values of variables at various points in the program. These extra print statements
show how the values were changing.

The work of finding out the cause of a bug is called debugging.

Debugging

Running a faulty program with extra diagnostic information to work out where the
mistakes in the code are, and then fix those mistakes.

One other way to diagnose a program is to run it ‘under a debugger’. This is a
tool that can be used to run the program one line at a time. Python has a
debugger that can be enabled from the Python shell window.

Debugging may uncover the bug and also show when the bug first occurs.
Without debugging, it may not be clear where the problem code is.

ECDL Computing Lesson 15 – Testing and Modification

© 2017 Page 145

15.4 IMPROVING A PROGRAM

 Concepts

Once a program is written and is successful, there is often pressure to create a
new and improved version of it.

Commercial considerations usually mean that a complete rewrite of the program is
not a good idea. A better plan is usually to make small incremental improvements
that make the program more useful to more people. Such changes help the code
to solve a more general problem than the initial version.

Suitability for Different Countries

Recall that in the lesson on computational thinking we looked at generalisation.
We saw that a washing machine design might be generalised by making it
suitable for more countries. This is very common in software too.

Software may benefit from translation of the strings into other languages. Usually
programmers attempt to use the same source code, but make the code more
flexible so that it can use different strings for different languages as indicated by a
parameter.

Generalising code to make it suitable for different countries is sometimes called
localisation. Localisation can go deeper than simply translation. A recipe
program might support different kinds of measurement. For example, a recipe
program might support temperature measured in degrees Fahrenheit or in
degrees Celsius. This would help it to be useful in more countries.

Work on localisation may also draw attention to other related opportunities for
generalisation.

Localisation work on providing quantities of ingredients in different measurement
units, as needed in different countries, could lead on to other useful
generalisations. An improved program could calculate quantities in different units.
It could allow the user of the program to request adjustments to portion size and
number of portions, with the program recalculating the quantities.

Solving a Larger Problem

In the lesson on computational thinking recall that we saw that a solution to the
problem of running a musical festival could be generalised. Experience in running
a music festival could contribute to solving the more ambitious problem of running
a musical tour.

Lesson 15 – Testing and Modification ECDL Computing

Page 146 © 2017

In looking for opportunities to improve a recipe program, small additions that, for
example, count calories, or add up nutritional information, could generalise the
recipe program and make it part of a larger computer program for health and
nutrition.

Successful improvement to a program needs to balance ambition with practicality.
A large change in functionality of a program may require a rewrite, or may require
a new library to bring in new functionality. Large changes, such as adding voice
recognition into a program go beyond what can be achieved with small
incremental improvements.

Presenting a Program

A programmer’s view of a program is very different to the view of the program a
user or a manager needs to have. When presenting a program, be aware of the
audience and what aspects of the program are relevant to them. This is
particularly important when communicating proposed improvements. Pseudocode
and flowcharts may be relevant in showing how an algorithm works. They do little
to communicate purpose and value.

Communicating Purpose: When communicating the purpose of a program,
explain what problem the program solves. Generally programs are useful in parts
of a problem that are repeated again and again. Computers are good at
automation.

In communicating purpose, it may be useful to also communicate what parts of a
problem a program does not solve.

A word processing program saves an author from typing the same text out many
times as they work through different versions of a document. A word processing
program does little to help an author find the right words and find ideas for
characters and plot.

Communicating Value: The value of a program or improvements to a program
depend on who will use it in the market and on competition. Managers may want
to know if a similar program exists already, or if the new program can easily be
copied by others.

If the algorithms are new, creative, innovative, it may be possible to patent them
and so protect them from being copied.

If the program uses a proprietary file format, i.e. owned by the programmer of
his/her company, that stores data in a way that other programs can’t easily read,
that may inhibit other companies from making their own version.

ECDL Computing Lesson 15 – Testing and Modification

© 2017 Page 147

In communicating the value of a program, highlight what is unique about it. Show
that the unique aspects are of value to end users. A valuable program is one that
saves the end user time and money. Where possible support your claims about
the value of a program with numbers.

Lesson 15 – Testing and Modification ECDL Computing

Page 148 © 2017

15.5 REVIEW EXERCISE
1. Which expression has a syntax error?

a. 2+4+8
b. (2+4)*8
c. 2/4/8
d. 2+(4*8))

2. A logic test was intended to test if variable c, d and e are in order with c smallest and
e largest. Which of the following has a logic error:

a. if (c<d) and (d<e) :
b. if (e>d) and (d>c) :
c. if (c#d) and (d#e) :
d. if (e<d) and (d<c) :

3. Program testing is:

a. Checking with the customer that the specification is what they want.
b. Fixing a bug when a user reports an error.
c. When someone who has more experience has a look at the source code for a

program and helps improve it.
d. A formal approach to finding bugs in a program, by running the program with

different inputs.

4. Debugging is:

a. Checking a program against its requirements to see if it does what it is
supposed to do.

b. Enhancing a program by adding new features.
c. Work done to track down the cause of a problem and fix it.
d. Enhancing a program by taking out features which aren’t needed anymore.

5. One of the initial requirement for a particular program is that it ask for and remember

your name. Which of the following would you expect to see in the code to help meet
that requirement?

a. A recursive function
b. An input() statement
c. A bug
d. Code to convert a string to an integer.

6. A software company wants to make incremental improvements to version 1 of its

program for managing recipes. Which of the following is a good way to identify
possible enhancements?

a. Add code for drawing a fern recursively.
b. Use Google to search for “robots AND cooking”
c. Look for small changes that would make the program useful to more people.

ECDL Computing Lesson 15 – Testing and Modification

© 2017 Page 149

7. When describing the commercial value of a new program, the best way is:

a. Show as detailed a flowchart as possible to show how complex the program
is.

b. Describe the benefit to users and back it up with numerical data if you can.
c. Explain that the program is new, and therefore it must be of value.
d. Explain that it uses only well known, widely used, reliable algorithms.

Page 150 © 2017

ECDL Syllabus

Ref. Task Item Location
1.1.1 Define the term

computing.
1.1
Computational
Thinking

1.1.2 Define the term
computational
thinking.

1.1
Computational
Thinking

1.1.3 Define the term
program.

1.2 Instructing
a Computer

1.1.4 Define the term code.
Distinguish between
source code, machine
code.

2.2 Computer
Languages

1.1.5 Understand the terms
program description
and specification.

2.3 Text About
Code

1.1.6 Recognise typical
activities in the
creation of a program:
analysis, design,
programming, testing,
enhancement.

2.4 Stages in
Developing a
Program

1.1.7 Understand the
difference between a
formal language and a
natural language.

2.1 Precision
of Language

2.1.1 Outline the typical
methods used in
computational
thinking:
decomposition, pattern
recognition,
abstraction,
algorithms.

1.1
Computational
Thinking

2.1.2 Use problem
decomposition to
break down data,
processes, or a
complex problem into
smaller parts.

1.1
Computational
Thinking

2.1.3 Identify patterns
among small,
decomposed
problems.

1.1
Computational
Thinking

Ref. Task Item Location
2.1.4 Use abstraction to

filter out unnecessary
details when analysing
a problem.

1.1
Computational
Thinking

2.1.5 Understand how
algorithms are used in
computational
thinking.

1.1
Computational
Thinking
1.2 Instructing
a Computer

2.2.1 Define the
programming
construct term
sequence. Outline the
purpose of sequencing
when designing
algorithms.

3.1 Steps in an
Algorithm

2.2.2 Recognise possible
methods for problem
representation like:
flowcharts,
pseudocode.

3.1 Steps in an
Algorithm
3.2 Flowcharts

2.2.3 Recognise flowchart
symbols like:
start/stop, process,
decision, input/output,
connector, arrow.

3.2 Flowcharts

2.2.4 Outline the sequence
of operations
represented by a
flowchart,
pseudocode.

3.2 Flowcharts
3.3
Pseudocode

2.2.5 Write an accurate
algorithm based on a
description using a
technique like:
flowchart,
pseudocode.

3.2 Flowcharts
3.3
Pseudocode

2.2.6 Fix errors in an
algorithm like: missing
program element,
incorrect sequence,
incorrect decision
outcome.

3.4 Fixing
Algorithms

© 2017 Page 151

Ref. Task Item Location
3.1.1 Describe the

characteristics of well-
structured and
documented code like:
indentation,
appropriate
comments, descriptive
naming.

9.1 Readable
Code
9.2 Comments
9.3
Organisation of
Code
9.4 Descriptive
Names

3.1.2 Use simple arithmetic
operators to perform
calculations in a
program: +, -, /, *.

5.1 Performing
Calculations
with Python

3.1.3 Understand the
precedence of
operators and the
order of evaluation in
complex expressions.
Understand how to
use parenthesis to
structure complex
expressions.

5.2
Precedence of
Operators

7.5 Putting it
all together

3.1.4 Understand the term
parameter. Outline the
purpose of parameters
in a program.

11.3
Procedures
and Functions

3.1.5 Define the
programming
construct term
comment. Outline the
purpose of a comment
in a program.

9.2 Comments

3.1.6 Use comments in a
program.

9.2 Comments

3.2.1 Define the
programming
construct term
variable. Outline the
purpose of a variable
in a program.

6.2 Variables

3.2.2 Define and initialise a
variable.

6.2 Variables

3.2.3 Assign a value to a
variable.

6.2 Variables

Ref. Task Item Location
3.2.4 Use appropriately

named variables in a
program for
calculations, storing
values.

6.2 Variables
9.4 Descriptive
Names

3.2.5 Use data types in a
program: string,
character, integer,
float, Boolean.

6.1 Data Types
6.2 Variables
6.3 Beyond
Numbers
7.4 Booleans
and Variables

3.2.6 Use an aggregate data
type in a program like:
array, list, tuple.

8.1 Aggregate
Data Types
8.2 Lists
8.3 Tuples

3.2.7 Use data input from a
user in a program.

6.3 Beyond
Numbers
10.3 IF ELSE
Statement

3.2.8 Use data output to a
screen in a program.

4.2 Exploring
Python
6.2 Variables

4.1.1 Define the
programming
construct term logic
test. Outline the
purpose of a logic test
in a program.

10.2 IF
Statement

4.1.2 Recognise types of
Boolean logic
expressions to
generate a true or
false value like: =, >,
<, >=, <=, <>, !=, ==,
AND, OR, NOT.

7.2
Comparison
Operators
7.3 Boolean
Operators
7.5 Putting it
all together

4.1.3 Use Boolean logic
expressions in a
program.

10.2 IF
Statement
10.3 IF ELSE
Statement

4.2.1 Define the
programming
construct term loop.
Outline the purpose
and benefit of looping
in a program.

12.1 Looping

Page 152 © 2017

Ref. Task Item Location
4.2.2 Recognise types of

loops used for
iteration: for, while,
repeat.

12.1 Looping
12.2 Looping
with Variables
12.3 Variations
on Loops

4.2.3 Use iteration (looping)
in a program like: for,
while, repeat.

12.1 Looping
12.2 Looping
with Variables
12.3 Variations
on Loops
12.4 Putting it
all together

4.2.4 Understand the term
infinite loop.

12.3 Variations
on Loops

4.2.5 Understand the term
recursion.

14.1 Recursion

4.3.1 Define the
programming
construct term
conditional statement.
Outline the purpose of
conditional statements
in a program.

10.2 IF
Statement

4.3.2 Use IF…THEN...ELSE
conditional statements
in a program.

10.2 IF ELSE
Statement

4.4.1 Understand the term
procedure. Outline the
purpose of a
procedure in a
program.

11.3 Functions
and
Procedures

4.4.2 Write and name a
procedure in a
program.

11.3 Functions
and
Procedures
12.4 Putting it
all together

4.4.3 Understand the term
function. Outline the
purpose of a function
in a program.

11.3 Functions
and
Procedures

4.4.4 Write and name a
function in a program.

11.3 Functions
and
Procedures
12.4 Putting it
all together

Ref. Task Item Location
4.5.1 Understand the term

event. Outline the
purpose of an event in
a program.

13.2 Events

4.5.2 Use event handlers
like: mouse click,
keyboard input, button
click, timer.

13.4 Pygame
Library
13.6 Drawing
Using the
Libraries

4.5.3 Use available generic
libraries like: math,
random, time.

13.2 Standard
Libraries

5.1.1 Understand the
benefits of testing and
debugging a program
to resolve errors.

15.3 Testing
and Debugging
a Program

5.1.2 Understand types of
errors in a program
like: syntax, logic.

15.1 Types of
Errors

5.1.3 Run a program. 4.3 Save a
Program

5.1.4 Identify and fix a syntax
error in a program like:
incorrect spelling,
missing punctuation.

15.2 Finding
Errors
15.3 Testing
and Debugging
a Program

5.1.5 Identify and fix a logic
error in a program like:
incorrect Boolean
expression, incorrect
data type.

15.2 Finding
Errors
15.3 Testing
and Debugging
a Program

5.2.1 Check your program
against the
requirements of the
initial description.

2.4 Stages in
Developing a
Program
15.3 Testing
and Debugging
a Program

5.2.2 Describe the
completed program,
communicating
purpose and value.

15.4 Improving
a Program

5.2.3 Identify enhancements,
improvements to the
program that may meet

15.4 Improving
a Program

© 2017 Page 153

Ref. Task Item Location
additional, related
needs.

Congratulations! You have reached the end of the ECDL Computing book.
You have learned about the skills and competences relating to computational thinking and
coding that will guide you through the process of problem solving and creating simple
computer programs:

• Understand key concepts relating to computing and the typical activities involved in
creating a program.

• Understand and use computational thinking techniques like problem decomposition,
pattern recognition, abstraction and algorithms to analyse a problem and develop
solutions.

• Write, test and modify algorithms for a program using flowcharts and pseudocode.
• Understand key principles and terms associated with coding and the importance of

well-structured and documented code.
• Understand and use programming constructs like variables, data types, and logic in

a program.
• Improve efficiency and functionality by using iteration, conditional statements,

procedures and functions, as well as events and commands in a program.
• Test and debug a program and ensure it meets requirements before release.

Having reached this stage of your learning, you should now be ready to undertake an ECDL
certification test. For further information on taking this test, please contact your ECDL test
centre.

ECDL Malta
Flat 2, St John’s Flats,
Naxxar Road,
Birkirkara BKR9040
Email: info@ecdl.com.mt

Phone: +356 2166 7706
Web: www.ecdl.com.mt

