
ICDL Professional

COMPUTING
Syllabus 1.0

Syllabus Document

Copyright 2017-2019 ICDL Foundation. ICDL Foundation, ICDL Europe, ICDL, ECDL and related logos are registered business names and/or
trademarks of ECDL Foundation.

© 2017 - 2019 ICDL Foundation Ref: ICDL Computing - Syllabus - V1.0 Page 2 of 6

Purpose
This document details the syllabus for the Computing module. The syllabus describes, through
learning outcomes, the knowledge and skills that a candidate for the Computing module should
possess. The syllabus also provides the basis for the theory and practice-based test in this
module.

Copyright © 2017 - 2019 ICDL Foundation
All rights reserved. No part of this publication may be reproduced in any form except as
permitted by ICDL Foundation. Enquiries for permission to reproduce material should be
directed to ICDL Foundation.

Disclaimer
Although every care has been taken by ICDL Foundation in the preparation of this publication,
no warranty is given by ICDL Foundation, as publisher, as to the completeness of the
information contained within it and neither shall ICDL Foundation be responsible or liable for
any errors, omissions, inaccuracies, loss or damage whatsoever arising by virtue of such
information or any instructions or advice contained within this publication. Changes may be
made by ICDL Foundation at its own discretion and at any time without notice.

© 2017 - 2019 ICDL Foundation Ref: ICDL Computing - Syllabus - V1.0 Page 3 of 6

Computing Module

This module sets out essential concepts and skills relating to the ability to use computational thinking
and coding to create simple computer programs.

Module Goals

Successful candidates will be able to:

• Understand key concepts relating to computing and the typical activities involved in creating a
program.

• Understand and use computational thinking techniques like problem decomposition, pattern

recognition, abstraction and algorithms to analyse a problem and develop solutions.

• Write, test and modify algorithms for a program using flowcharts and pseudocode.

• Understand key principles and terms associated with coding and the importance of well-
structured and documented code.

• Understand and use programming constructs like variables, data types, and logic in a program.

• Improve efficiency and functionality by using iteration, conditional statements, procedures and
functions, as well as events and commands in a program.

• Test and debug a program and ensure it meets requirements before release.

CATEGORY SKILL SET REF. TASK ITEM

1 Computing Terms 1.1 Key Concepts 1.1.1 Define the term computing.

 1.1.2 Define the term computational thinking.

 1.1.3 Define the term program.

 1.1.4 Define the term code. Distinguish between source

code, machine code.

 1.1.5 Understand the terms program description and

specification.

 1.1.6 Recognise typical activities in the creation of a

program: analysis, design, programming, testing,
enhancement.

 1.1.7 Understand the difference between a formal

language and a natural language.

2 Computational

Thinking Methods
2.1 Problem Analysis 2.1.1 Outline the typical methods used in computational

thinking: decomposition, pattern recognition,

abstraction, algorithms.

 2.1.2 Use problem decomposition to break down data,

processes, or a complex problem into smaller
parts.

 2.1.3 Identify patterns among small, decomposed

problems.

 2.1.4 Use abstraction to filter out unnecessary details

when analysing a problem.

© 2017 - 2019 ICDL Foundation Ref: ICDL Computing - Syllabus - V1.0 Page 4 of 6

CATEGORY SKILL SET REF. TASK ITEM

 2.1.5 Understand how algorithms are used in

computational thinking.

 2.2 Algorithms 2.2.1 Define the programming construct term sequence.

Outline the purpose of sequencing when
designing algorithms.

 2.2.2 Recognise possible methods for problem

representation like: flowcharts, pseudocode.

 2.2.3 Recognise flowchart symbols like: start/stop,

process, decision, input/output, connector, arrow.

 2.2.4 Outline the sequence of operations represented

by a flowchart, pseudocode.

 2.2.5 Write an accurate algorithm based on a

description using a technique like: flowchart,
pseudocode.

 2.2.6 Fix errors in an algorithm like: missing program

element, incorrect sequence, incorrect decision
outcome.

3 Starting to Code 3.1 Getting Started 3.1.1 Describe the characteristics of well-structured and

documented code like: indentation, appropriate
comments, descriptive naming.

 3.1.2 Use simple arithmetic operators to perform

calculations in a program: +, -, /, *.

 3.1.3 Understand the precedence of operators and the

order of evaluation in complex expressions.
Understand how to use parenthesis to structure
complex expressions.

 3.1.4 Understand the term parameter. Outline the

purpose of parameters in a program.

 3.1.5 Define the programming construct term comment.

Outline the purpose of a comment in a program.

 3.1.6 Use comments in a program.

 3.2 Variables and Data

Types
3.2.1 Define the programming construct term variable.

Outline the purpose of a variable in a program.

 3.2.2 Define and initialise a variable.

 3.2.3 Assign a value to a variable.

 3.2.4 Use appropriately named variables in a program

for calculations, storing values.

 3.2.5 Use data types in a program: string, character,

integer, float, Boolean.

 3.2.6 Use an aggregate data type in a program like:

array, list, tuple.

© 2017 - 2019 ICDL Foundation Ref: ICDL Computing - Syllabus - V1.0 Page 5 of 6

CATEGORY SKILL SET REF. TASK ITEM

 3.2.7 Use data input from a user in a program.

 3.2.8 Use data output to a screen in a program.

4 Building using Code 4.1 Logic 4.1.1 Define the programming construct term logic test.

Outline the purpose of a logic test in a program.

 4.1.2 Recognise types of Boolean logic expressions to

generate a true or false value like: =, >, <, >=, <=,
<>, !=, ==, AND, OR, NOT.

 4.1.3 Use Boolean logic expressions in a program.

 4.2 Iteration 4.2.1 Define the programming construct term loop.

Outline the purpose and benefit of looping in a
program.

 4.2.2 Recognise types of loops used for iteration: for,

while, repeat.

 4.2.3 Use iteration (looping) in a program like: for, while,

repeat.

 4.2.4 Understand the term infinite loop.

 4.2.5 Understand the term recursion.

 4.3 Conditionality 4.3.1 Define the programming construct term

conditional statement. Outline the purpose of
conditional statements in a program.

 4.3.2 Use IF…THEN...ELSE conditional statements in a

program.

 4.4 Procedures and

Functions

4.4.1 Understand the term procedure. Outline the

purpose of a procedure in a program.

 4.4.2 Write and name a procedure in a program.

 4.4.3 Understand the term function. Outline the purpose

of a function in a program.

 4.4.4 Write and name a function in a program.

 4.5 Events and

Commands

4.5.1 Understand the term event. Outline the purpose of

an event in a program.

 4.5.2 Use event handlers like: mouse click, keyboard

input, button click, timer.

 4.5.3 Use available generic libraries like: math, random,

time.

5 Test, Debug and

Release

5.1 Run, Test and

Debug

5.1.1 Understand the benefits of testing and debugging

a program to resolve errors.

 5.1.2 Understand types of errors in a program like:

syntax, logic.

© 2017 - 2019 ICDL Foundation Ref: ICDL Computing - Syllabus - V1.0 Page 6 of 6

CATEGORY SKILL SET REF. TASK ITEM

 5.1.3 Run a program.

 5.1.4 Identify and fix a syntax error in a program like:

incorrect spelling, missing punctuation.

 5.1.5 Identify and fix a logic error in a program like:

incorrect Boolean expression, incorrect data type.

 5.2 Release 5.2.1 Check your program against the requirements of

the initial description.

 5.2.2 Describe the completed program, communicating

purpose and value.

 5.2.3 Identify enhancements, improvements to the

program that may meet additional, related needs.

